В предыдущей статье данного цикла (см. № 2’2005) мы рассказали об основных новшествах аналитических служб SQL Server 2005. Сегодня мы подробнее рассмотрим средства создания OLAP-решений, входящие в этот продукт.

Коротко об основах OLAP

режде чем начать разговор о средствах создания OLAP-решений, напомним, что OLAP (On-Line Analytical Processing) — это технология комплексного многомерного анализа данных, концепция которой была описана в 1993 году Э.Ф.Коддом, знаменитым автором реляционной модели данных. В настоящее время поддержка OLAP реализована во многих СУБД и иных инструментах.

OLAP-кубы

Что представляют собой OLAP-данные? В качестве ответа на этот вопрос рассмотрим простейший пример. Предположим, в корпоративной базе данных некоего предприятия имеется набор таблиц, содержащих сведения о продажах товаров или услуг, и на их основе создано представление Invoices с полями Country (страна), City (город), CustomerName (название компании-клиента), Salesperson (менеджер по продажам), OrderDate (дата размещения заказа), CategoryName (категория товара), ProductName (наименование товара), ShipperName (компания-перевозчик), ExtendedPrice (оплата за товар), при этом последнее из перечисленных полей, собственно, и является объектом анализа.

Выбор данных из такого представления можно осуществить с помощью следующего запроса:

SELECT Country, City, CustomerName, Salesperson,

OrderDate, CategoryName, ProductName, ShipperName, ExtendedPrice

FROM Invoices

Предположим, нас интересует, какова суммарная стоимость заказов, сделанных клиентами из разных стран. Для получения ответа на этот вопрос необходимо сделать следующий запрос:

SELECT Country, SUM (ExtendedPrice) FROM Invoices

GROUP BY Country

Результатом этого запроса будет одномерный набор агрегатных данных (в данном случае — сумм):

Country SUM (ExtendedPrice)
Argentina 7327.3
Austria 110788.4
Belgium 28491.65
Brazil 97407.74
Canada 46190.1
Denmark 28392.32
Finland 15296.35
France 69185.48
209373.6
...

Если же мы хотим узнать, какова суммарная стоимость заказов, сделанных клиентами из разных стран и доставленных различными службами доставки, мы должны выполнить запрос, содержащий два параметра в предложении GROUP BY:

SELECT Country, ShipperName, SUM (ExtendedPrice) FROM Invoices

GROUP BY COUNTRY, ShipperName

Исходя из результатов этого запроса можно создать таблицу следующего вида:

Такой набор данных называется сводной таблицей (pivot table).

SELECT Country, ShipperName, SalesPerson SUM (ExtendedPrice) FROM Invoices

GROUP BY COUNTRY, ShipperName, Year

На основании результатов этого запроса можно построить трехмерный куб (рис. 1).

Добавляя дополнительные параметры для анализа, можно создать куб с теоретически любым числом измерений, при этом наряду с суммами в ячейках OLAP-куба могут содержаться результаты вычисления иных агрегатных функций (например, средние, максимальные, минимальные значения, количество записей исходного представления, соответствующее данному набору параметров). Поля, на основании которых вычисляются результаты, называются мерами куба.

Иерархии в измерениях

Предположим, нас интересует не только суммарная стоимость заказов, сделанных клиентами в разных странах, но и суммарная стоимость заказов, сделанных клиентами в разных городах одной страны. В этом случае можно воспользоваться тем, что значения, наносимые на оси, имеют различные уровни детализации — это описывается в рамках концепции иерархии изменений. Скажем, на первом уровне иерархии располагаются страны, на втором — города. Отметим, что начиная с SQL Server 2000 аналитические службы поддерживают так называемые несбалансированные иерархии, содержащие, например, такие члены, «дети» которых содержатся не на соседних уровнях иерархии или отсутствуют для некоторых членов изменения. Типичный пример подобной иерархии — учет того факта, что в разных странах могут существовать, либо отсутствовать такие административно-территориальные единицы, как штат или область, размещающиеся в географической иерархии между странами и городами (рис. 2).

Отметим, что в последнее время принято выделять типичные иерархии, например содержащие географические или временные данные, а также поддерживать существование нескольких иерархий в одном измерении (в частности, для календарного и финансового года).

Создание OLAP-кубов в SQL Server 2005

SQL Server 2005 кубы создаются с помощью SQL Server Business Intelligence Development Studio. Этот инструмент представляет собой специальную версию Visual Studio 2005, предназначенную для решения данного класса задач (а при наличии уже установленной среды разработки список шаблонов проектов пополняется проектами, предназначенными для создания решений на основе SQL Sever и его аналитических служб). В частности, для создания решений на основе аналитических служб предназначен шаблон Analysis Services Project (рис. 3).

Для создания OLAP-куба в первую очередь следует решить, на основе каких данных его формировать. Наиболее часто OLAP-кубы строятся на основе реляционных хранилищ данных со схемами «звезда» или «снежинка» (о них мы рассказывали в предыдущей части статьи). В комплекте поставки SQL имеется пример такого хранилища — база данных AdventureWorksDW, для использования которой в качестве источника следует найти в Solution Explorer папку Data Sources, выбрать пункт контекстного меню New Data Source и последовательно ответить на вопросы соответствующего мастера (рис. 4).

Затем рекомендуется создать Data Source View — представление, на основе которого будет создаваться куб. Для этого необходимо выбрать соответствующий пункт контекстного меню папки Data Source Views и последовательно ответить на вопросы мастера. Результатом указанных действий станет схема данных, с помощью которых будет построено представление источников данных, при этом в полученной схеме вместо исходных можно указать «дружественные» имена таблиц (рис. 5).

Описанный таким образом куб можно перенести на сервер аналитических служб, выбрав из контекстного меню проекта опцию Deploy, и осуществить просмотр его данных (рис. 7).

При создании кубов в настоящее время используются многие особенности новой версии SQL Server, такие, например, как представление источников данных. Описание исходных данных для построения куба, равно как и описание структуры куба, теперь производится с помощью знакомого многим разработчикам инструмента Visual Studio, что является немалым достоинством новой версии этого продукта — изучение разработчиками аналитических решений нового инструментария в этом случае сведено к минимуму.

Отметим, что в созданном кубе можно менять состав мер, удалять и добавлять атрибуты измерений и добавлять вычисляемые атрибуты членов измерений на основе имеющихся атрибутов (рис. 8).

Рис. 8. Добавление вычисляемого атрибута

Кроме того, в кубах SQL Server 2005 можно осуществлять автоматическую группировку или сортировку членов измерения по значению атрибута, определять связи между атрибутами, реализовывать связи «многие ко многим», определять ключевые показатели бизнеса, а также решать многие другие задачи (подробности о том, как выполняются все эти действия, можно найти в разделе SQL Server Analysis Services Tutorial справочной системы данного продукта).

В последующих частях данной публикации мы продолжим знакомство с аналитическими службами SQL Server 2005 и выясним, что нового появилось в области поддержки Data Mining.

07.04.2011 Дерек Комингор

Если вам приходилось иметь дело с какой-либо областью, связанной с технологией, вы слышали, вероятно, термин «куб»; однако большинство обычных администраторов и разработчиков баз данных с этими объектами не работали. Кубы представляют собой действенную архитектуру данных для быстрого агрегирования многомерной информации. Если вашей организации требуется выполнить анализ больших объемов данных, то идеальным решением будет именно куб

Что такое куб?

Реляционные базы данных были спроектированы для осуществления тысяч параллельных транзакций, с сохранением производительности и целостности данных. По своей конструкции реляционные базы данных не дают эффективности в агрегировании и поиске при больших объемах данных. Чтобы агрегировать и возвратить большие объемы данных, реляционная база данных должна получить основанный на наборе запрос, информация для которого будет собрана и агрегирована «на лету». Такие реляционные запросы - очень затратные, поскольку опираются на множественные соединения и агрегатные функции; особенно малоэффективны агрегатные реляционные запросы при работе с большими массивами данных.

Кубы - это многомерные сущности, предназначенные для устранения указанного недостатка в реляционных базах данных. Применяя куб, вы можете предоставить пользователям структуру данных, которая обеспечивает быстрый отклик на запросы с большими объемами агрегации. Кубы выполняют это «волшебство агрегирования» путем предварительного агрегирования данных (измерений) по нескольким измерениям. Предварительная агрегация куба обычно осуществляется во время его обработки. При обработке куба вы порождаете вычисленные предварительно агрегаты данных, которые хранятся в бинарной форме на диске.

Куб - центральная конструкция данных в оперативной системе анализа данных OLAP аналитических служб SQL Server (SSAS). Кубы обычно строятся из основной реляционной базы данных, называемой моделью размерностей, но представляют собой отдельные технические сущности. Логически куб является складом данных, который составлен из размерностей (dimensions) и измерений (measures). Размерности содержат описательные признаки и иерархии, в то время как измерения - это факты, которые вы описываете в размерностях. Измерения объединены в логические сочетания, которые называются группами измерений. Вы привязываете размерности к группам измерений на основе признака - степени детализации.

В файловой системе куб реализован как последовательность связанных бинарных файлов. Бинарная архитектура куба облегчает быстрое извлечение больших объемов многомерных данных.

Я упомянул о том, что кубы построены из основной реляционной базы данных, называемой моделью размерностей. Модель размерностей содержит реляционные таблицы (факт и размерность), что связывает ее с сущностями куба. Таблицы фактов содержат измерения, такие как количество проданного продукта. Таблицы размерностей хранят описательные признаки, такие как названия продукта, даты и имена служащих. Как правило, таблицы фактов и таблицы размерностей связаны через ограничения первичного внешнего ключа, при том что внешние ключи находятся в таблице фактических данных (эта реляционная связь имеет отношение к признаку степени детализации куба, о котором говорилось выше). Когда таблицы размерности связаны непосредственно с таблицей фактов, формируется схема звезды. Когда таблицы размерности непосредственно не связаны с таблицей фактов, получается схема снежинки.

Обратите внимание, что модели размерностей классифицированы в зависимости от сферы применения. Витрина данных является моделью размерностей, которая предназначена для единичного бизнес-процесса, такого как продажи или управление запасами. Хранилище данных - модель размерностей, разработанная для того, чтобы охватить составные бизнес-процессы, так что она способствует перекрестной аналитике бизнес-процессов.

Требования к программному обеспечению

Теперь, когда у вас есть базовое понимание того, что такое кубы и почему они важны, я включу приборы и приглашу вас на пошаговый тур: построить свой первый куб, используя SSAS. Существуют некоторые основные компоненты программного обеспечения, которые вам понадобятся, поэтому, прежде чем приступать к строительству первого куба, убедитесь, что ваша система соответствует требованиям.

Мой пример куба «Продажи через Интернет» будет построен на основе тестовой базы данных AdventureWorksDW 2005. Я буду строить тестовый куб из подмножества таблиц, найденных в тестовой базе данных, которые будут полезны для анализа данных о сбыте через Интернет. На рисунке 1 представлена основная схема таблиц базы данных. Поскольку я использую версию 2005, вы можете следовать моим указаниям, применяя либо SQL Server 2005, либо SQL Server 2008.

Рисунок 1. Подмножество витрины данных Adventure Works Internet Sales

Учебную базу данных Adventure WorksDW 2005 можно найти на сайте CodePlex: msftdbprodsamples.codeplex.com. Найдите ссылку «SQL Server 2005 product sample databases are still available» (http://codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseId=4004). Учебная база данных содержится в файле AdventureWorksBI.msi (http://msftdbprodsamples.codeplex.com/releases/view/4004#DownloadId=11755).

Как уже упоминалось, необходимо иметь доступ к экземпляру SQL Server 2008 или 2005, в том числе SSAS и к компонентам Business Intelligence Development Studio (BIDS). Я буду использовать SQL Server 2008, так что вы можете увидеть некоторые тонкие различия, если используете SQL Server 2005.

Создание проекта SSAS

Первое, что вы должны сделать, - это создать проект SSAS, используя BIDS. Найдите BIDS в меню Start и далее в меню Microsoft SQL Server 2008/2005 подпункт SQL Server Business Intelligence Development Studio. При нажатии на эту кнопку запустится BIDS c экраном заставки по умолчанию. Создайте новый проект SSAS, выбрав File, New, Project. Вы увидите диалоговое окно New Project (новый проект), которое показано на экране 1. Выберите папку проекта Analysis Services Project и задайте описание этому проекту «SQLMAG_MyFirstCube». Нажмите кнопку ОК.

Когда проект будет создан, щелкните по нему правой кнопкой мыши в Solution Explorer и выберите в контекстном меню пункт свойств Properties. Теперь выберите раздел Deployment в левой части диалогового окна SQLMAG_MyFirstCube: Property Pages и проверьте установки значений для параметров Target Server и Database settings, как показано на экране 2. Если вы работаете в распределенной среде SQL Server, вам необходимо уточнить значение свойства Target Server именем сервера, на который вы собираетесь производить развертывание. Щелкните OK, когда вас устроят установленные значения параметров развертывания для данного проекта SSAS.

Определение источника данных

Первый объект, который нужно создать, - это источник данных. Объект источника данных обеспечивает схему и данные, используемые при построении связанных с кубом и расположенных в его основании объектов. Чтобы создать объект источника данных в BIDS, задействуйте мастер источников данных Data Source Wizard.

Начните работу мастера источника данных щелчком правой кнопкой мыши по папке Data Source на панели Solution Explorer, с выбора пункта New Data Source. Вы обнаружите, что создание объектов SSAS в BIDS имеет характер разработки. Сначала мастер проводит вас через процесс создания объекта и общие настройки. А затем вы открываете полученный объект SSAS в проектировщике и детально подстраиваете его, если нужно. Как только вы проходите экран приглашения, определите новое соединение с данными, нажимая кнопку New. Выберите и создайте новое соединение на основе Native OLEDB\SQL Server Native Client 10, указывающее на желательный для вас сервер SQL Server, который владеет нужным экземпляром базы данных. Вы можете использовать либо аутентификацию Windows, либо SQL Server, в зависимости от настроек окружающей среды SQL Server. Нажмите кнопку Test Connection, чтобы удостовериться, что вы правильно определили соединение с базой данных, а затем кнопку OK.

Далее следует Impersonation Infor­mation (информация о настрой­ке заимствования прав), которая, как и связь с данными, зависит от того, как устроена среда SQL Server. Заимствование прав - это контекст безопасности, на который полагается SSAS, обрабатывая свои объекты. Если вы управляете развертыванием на основном, единственном сервере (или ноутбуке), как, я полагаю, большинство читателей, вы можете просто выбрать вариант использования учетной записи службы Use the service account. Нажмите Next для завершения работы мастера источника данных и задайте AWDW2005 в качестве имени источника данных. Весьма удобно, что можно задействовать этот метод для целей тестирования, но в реальной производственной среде это не самая лучшая практика - использовать учетную запись службы. Лучше указать доменные учетные записи для заимствования прав подключения SSAS к источнику данных.

Представление источника данных

Для определенного вами источника данных на следующем шаге в процессе построения куба SSAS следует создать представление Data Source View (DSV). DSV обеспечивает возможность разделения схемы, которую ожидает ваш куб, от подобной схемы основной базы данных. В результате DSV можно использовать для того, чтобы расширить основную реляционную схему при построении куба. Некоторые из ключевых возможностей DSV для расширения схем источников данных включают именованные запросы, логические отношения между таблицами и именованные вычисляемые столбцы.

Пойдем дальше, щелкнем правой кнопкой мыши по папке DSV и выберем пункт New Data Source View, чтобы запустить мастер создания новых представлений DSV. В диалоговом окне, на шаге Select a Data Source, выберите соединение с реляционной базой данных и нажмите кнопку Next. Выберите таблицы FactInternetSales, DimProduct, DimTime, DimCustomer и щелкните кнопку с одиночной стрелкой направо, чтобы перенести эти таблицы в колонку Included. Наконец, кликните Next и завершите работу мастера, принимая имя по умолчанию и нажимая кнопку Finish.

На данном этапе у вас должно быть представление DSV, которое расположено под папкой Data Source Views в Solution Explorer. Выполните двойной щелчок по новому DSV, чтобы запустить конструктор DSV. Вы должны увидеть все четыре таблицы для данного DSV, как показано на рисунке 2.

Создание размерностей базы данных

Как я объяснил выше, размерности обеспечивают описательные признаки измерений и иерархий, которые используются для того, чтобы обеспечить агрегирование выше уровня деталей. Необходимо понять различие между размерностью базы данных и размерностью куба: размерности из базы данных предоставляют базовые объекты размерностей для нескольких размерностей куба, по которым его будут строить.

Размерности базы данных и куба обеспечивают изящное решение для концепции, известной как «ролевые размерности». Ролевые размерности применяются, когда вам необходимо использовать единственную размерность в кубе многократно. Дата - прекрасный пример в данном экземпляре куба: вы будете строить единственную размерность даты и ссылаться на нее один раз для каждой даты, для которой хотите анализировать продажи через Интернет. Календарная дата будет первой размерностью, которую вы создадите. Щелкните правой кнопкой мышки по папке Dimensions в Solution Explorer и выберите пункт New Dimension, чтобы запустить мастер размерностей Dimension Wizard. Выберите пункт Use an existing table и щелкните Next на шаге выбора метода создания Select Creation Method. На шаге определения источника информации Specify Source Information укажите таблицу DimTime в раскрывающемся списке Main table и нажмите кнопку Next. Теперь, на шаге выбора признака размерности Select Dimension Attributes, вам необходимо отобрать атрибуты размерности времени. Выберите каждый атрибут, как показано на экране 3.

Нажмите Next. На завершающем шаге введите Dim Date в поле Name и нажмите кнопку Finish для завершения работы мастера размерности. Теперь вы должны увидеть новую размерность даты Dim Date, расположенную под папкой Dimensions в Solution Explorer.

Затем используйте мастер размерности, чтобы создать размерности продукции и клиента. Выполните те же самые шаги для создания базовой размерности, что и прежде. Работая с мастером размерности, убедитесь, что вы выбираете все потенциальные признаки на шаге Select Dimension Attributes. Значения по умолчанию для других параметров настройки вполне подойдут для экземпляра тестового куба.

Создание куба продаж по Интернету

Теперь, подготовив размерности базы данных, вы можете приступить к строительству куба. В Solution Explorer щелкните правой кнопкой мыши на папке Cubes и выберите New Cube для запуска мастера создания кубов Cube Wizard. В окне Select Creation Method выберите вариант использования существующих таблиц Use existing tables. Выберите таблицу FactInternetSales для Measure Group на шаге выбора таблицы групп измерения Select Measure Group Tables. Удалите флажок рядом с измерениями Promotion Key, Currency Key, Sales Territory Key и Revision Number на шаге Select Measures и нажмите Next.

На экране Select Existing Dimensions убедитесь, что все существующие размерности базы данных выбраны, чтобы использовать их далее как размерности куба. Поскольку мне хотелось бы сделать данный куб настолько простым, насколько это возможно, отмените выбор размерности FactInternetSales на шаге Select New Dimensions. Оставляя размерность FactInternetSales выбранной, вы создали бы то, что называется размерностью факта или вырожденной размерностью. Размерности факта - это размерности, которые были созданы с использованием основной таблицы фактов в противоположность традиционной таблице размерностей.

Нажмите кнопку Next, чтобы перей­ти к шагу Completing the Wizard, и введите «Мой первый куб» в поле имени куба. Нажмите кнопку Finish, чтобы завершить процесс работы мастера создания куба.

Развертывание и обработка куба

Теперь все готово к развертыванию и обработке первого куба. Щелкните правой кнопкой мыши по значку нового куба в Solution Explorer и выберите пункт Process. Вы увидите окно с сообщением о том, что содержание представляется устаревшим. Щелкните Yes для развертывания нового куба на целевом сервере SSAS. При развертывании куба вы посылаете файл XML for Analisis (XMLA) на целевой сервер SSAS, который создает куб на самом сервере. Как уже упоминалось, обработка куба заполняет его двоичные файлы на диске данными из основного источника, а также дополнительными метаданными, которые вы добавили (размерности, измерения и настройки куба).

Как только процесс развертывания будет завершен, появляется новое диалоговое окно Process Cube. Нажмите кнопку Run, чтобы начать процесс обработки куба, который открывается окном Process Progress. При завершении обработки нажмите кнопку Close (два раза, чтобы закрыть оба диалоговых окна) для завершения процессов развертывания и обработки куба.

Теперь вы построили, развернули и обработали свой первый куб. Вы можете просматривать этот новый куб, щелкая по нему правой кнопкой мыши в окне Solution Explorer и выбирая пункт Browse. Перетащите измерения в центр сводной таблицы, а атрибуты размерностей на строки и столбцы, чтобы исследовать свой новый куб. Обратите внимание, как быстро куб отрабатывает различные запросы с агрегированием. Теперь вы можете оценить неограниченную мощь и, значит, ценность для бизнеса, куба OLAP.

Дерек Комингор ([email protected]) - старший архитектор в компании B. I. Voyage, имеющей статус Microsoft Partner в области бизнес-аналитики. Имеет звание SQL Server MVP и несколько сертификатов Microsoft



В рамках данной работы будут рассмотрены следующие вопросы:

  • Что представляют собой OLAP-кубы?
  • Что такое меры, измерения, иерархии?
  • Какие виды операций можно выполнять над OLAP-кубами?
Понятие OLAP-куба

Главный постулат OLAP - многомерность в представлении данных. В терминологии OLAP для описания многомерного дискретного пространства данных используется понятие куба, или гиперкуба.

Куб представляет собой многомерную структуру данных, из которой пользователь-аналитик может запрашивать информацию. Кубы создаются из фактов и измерений.

Факты - это данные об объектах и событиях в компании, которые будут подлежать анализу. Факты одного типа образуют меры (measures). Мера есть тип значения в ячейке куба.

Измерения - это элементы данных, по которым производится анализ фактов. Коллекция таких элементов формирует атрибут измерения (например, дни недели могут образовать атрибут измерения "время"). В задачах бизнес-анализа коммерческих предприятий в качестве измерений часто выступают такие категории, как "время", "продажи", "товары", "клиенты", "сотрудники", "географическое местоположение". Измерения чаще всего являются иерархическими структурами, представляющими собой логические категории, по которым пользователь может анализировать фактические данные. Каждая иерархия может иметь один или несколько уровней. Так иерархия измерения "географическое местоположение" может включать уровни: "страна - область - город". В иерархии времени можно выделить, например, такую последовательность уровней: Измерение может иметь несколько иерархий (при этом каждая иерархия одного измерения должна иметь один и тот же ключевой атрибут таблицы измерений).

Куб может содержать фактические данные из одной или нескольких таблиц фактов и чаще всего содержит несколько измерений. Любой конкретный куб обычно имеет конкретный направленный предмет анализа.

На рисунке 1 показан пример куба, предназначенного для анализа продаж продуктов нефтепереработки некоторой компанией по регионам. Данный куб имеет три измерения (время, товар и регион) и одну меру (объем продаж, выраженный в денежном эквиваленте). Значения мер хранятся в соответствующих ячейках (cell) куба. Каждая ячейка уникально идентифицируется набором членов каждого из измерений, называемого кортежем. Например, ячейка, расположенная в нижнем левом углу куба (содержит значение $98399), задается кортежем [Июль 2005, Дальний Восток, Дизель]. Здесь значение $98399 показывают объем продаж (в денежном выражении) дизеля на Дальнем Востоке за июль 2005 года.

Стоит обратите также внимание на то, что некоторые ячейки не содержат никаких значений: эти ячейки пусты, потому что в таблице фактов не содержится данных для них.

Рис. 1. Куб с информацией о продажах нефтепродуктов в различных регионах

Конечной целью создания подобных кубов является минимизация времени обработки запросов, извлекающих требуемую информацию из фактических данных. Для реализации этой задачи кубы обычно содержат предварительно вычисленные итоговые данные, называемые агрегациями (aggregations). Т.е. куб охватывает пространство данных большее, чем фактическое - в нем существуют логические, вычисляемые точки. Вычислять значения точек в логическом пространстве на основе фактических значений позволяют функции агрегирования. Наиболее простыми функциями агрегирования являются SUM, MAX, MIN, COUNT. Так, например, используя функцию MAX, для приведенного в примере куба можно выявить, когда произошел пик продаж дизеля на Дальнем Востоке и т.д.

Еще одной специфической чертой многомерных кубов является сложность определения точки начала координат. Например, как задать точку 0 для измерения "Товар" или "Регионы"? Решением этой проблемы является внедрение специального атрибута, объединяющего все элементы измерения. Этот атрибут (создается автоматически) содержит всего один элемент - All ("Все"). Для простых функций агрегирования, например, суммы, элемент All эквивалентен сумме значений всех элементов фактического пространства данного измерения.

Важной концепцией многомерной модели данных является подпространство, или подкуб (sub cube). Подкуб представляет собой часть полного пространства куба в виде некоторой многомерной фигуры внутри куба. Так как многомерное пространство куба дискретно и ограничено, подкуб также дискретен и ограничен.

Операции над OLAP-кубами

Над OLAP-кубом могут выполняться следующие операции:

  • срез;
  • вращение;
  • консолидация;
  • детализация.
Срез (рисунок 2) является частным случаем подкуба. Это процедура формирования подмножество многомерного массива данных, соответствующее единственному значению одного или нескольких элементов измерений, не входящих в это подмножество. Например, чтобы узнать, как продвигались продажи нефтепродуктов во времени только в определенном регионе, а именно на Урале, то необходимо зафиксировать измерение "Товары" на элементе "Урал" и извлечь из куба соответствующее подмножество (подкуб).
  • Рис. 2. Срез OLAP-куба

    Вращение (рисунок 3) - операция изменения расположения измерений, представленных в отчете или на отображаемой странице. Например, операция вращения может заключаться в перестановке местами строк и столбцов таблицы. Кроме того, вращением куба данных является перемещение внетабличных измерений на место измерений, представленных на отображаемой странице, и наоборот.

    Синие стрелки - пути, которыми информация попадает в систему, зеленными – как информация в дальнейшем используется.

    1. Информация о заказах заносится в систему 1с – dbf версия.
    2. Загрузка данных «автообмен». Вообще – то это лишний шаг. Данные можно получать напрямую из dbf базы. Но программисты 1с решили что стандартный (для 1с) механизм выгрузки данных, принесет меньше вреда.
    3. Раз в сутки изменения за прошедший день выгружаются в специально подготовленную базу MsSql – хранилище. Выгружается не вся информация, а только то, что нужно для кубов.

      В принципе необязательно строить «хранилище». Данные для куба можно получать напрямую из базы 1с (MsSQL или dbf). Но в моем случае из 1с данные прошлых периодов периодически удаляются и очищаются справочники. Кроме того перед загрузкой в хранилище данные немного «чистятся».

    4. Происходит пересчет куба – данные попадают в куб.
    Информация из хранилища используется не только кубами, но и внешними приложениями, например эти данные нужны для расчета зарплаты, для учета оплат-поставок, для планирования работы менеджера. В тоже время данные из этих внешних программ также попадают в кубы.

    С кубами работают сотрудники в офисе – руководство, менеджеры, маркетинг, бухгалтерия. Так же информация отправляется поставщикам и торговым представителям в разных городах области.

    Любой пользователь может получить информацию разными путями:

    1. Построить отчет самостоятельно на web-странице или в excel

      Сначала использовался только excel, но возникало много проблем с тем, что екселевские файлы «разбредались», нужно было получить одну «точку входа» для выбора информации.
      Поэтому был создан локальный сайт, на котором опубликованы страницы с PivotTable. Сотрудник, который хочет получить пару цифр «здесь и сейчас» заходит на этот сайт и строит отчет в нужной ему форме. Если человеку нужно использовать этот отчет в дальнейшем – он может написать заявку, чтобы его отчет опубликовали в SSRS или сам сохраняет его в excel.

    2. Посмотреть стандартный отчет, опубликованный в SQL Server Reporting Services (SSRS)
    3. Получить локальный куб – и вне офиса «вращать» данные с помощью excel
    4. Подписаться на рассылку и получать стандартные отчеты из SSRS на e-mail
    5. Отдел маркетинга кроме того использует программу CubeSlice. В ней можно создавать локальные кубы самостоятельно и гораздо удобнее, чем в excel

    Локальные кубы

    Иногда пользователю нужно периодически получать отчеты, содержащие большие объемы данных. Например, отдел маркетинга отправлял отчеты поставщикам в виде екселевских файлов содержащих по несколько десятков страниц.
    Olap не «заточен» для получение такой информации – отчеты формировались очень долго.

    Как правило, поставщику тоже неудобно работать с большими отчетами. Поэтому большая часть, попробовав работать с локальными кубами, согласилась получать отчетность в таком виде. Список отчетов, которые формировал отдел маркетинга, значительно сократился. Оставшиеся тяжелые отчеты были реализованы в SSRS, созданы подписки (отчеты формируются автоматически и рассылаются поставщикам по расписанию)

    Основные параметры системы

    Конфигурация сервера:

    процессор: 2xAMD Opteron 280
    память: 4Gb
    дисковые массивы:
    операционная система: RAID 1 (зеркало) 2xSCSI 15k
    данные: RAID 0+1 4xSCSI 10k

    Согласитесь, такую машинку сложно назвать «мощным» сервером

    Объем данных:

    хранилище 10Гб, данные с 2002 года
    агрегация 30%
    Размер многомерной базы 350М
    кол-во членов «больших измерений»: товары 25 тыс., адреса – 20 тыс.
    кол-во документов в день - 400. среднее кол-во строк в документе - 30

    Что в итоге получила компания:

    Плюсы

    • Для руководства предприятия
      Позволяет посмотреть на ситуацию «сверху», выявить общие закономерности развития бизнеса.
      Помогает проследить динамику изменения основных показателей работы организации в целом и оперативно оценивать показатели эффективности работы подчиненных.
    • Для менеджера
      Возможность самостоятельно и в короткие сроки получить информацию необходимую для принятия решения.
      Простота работы. Все действия интуитивно понятны
    • Для поставщиков
      Возможность интерактивной работы с информацией
    • С точки зрения it-специалиста
      Уменьшение рутинной работы. Большую часть отчетов пользователь получает самостоятельно.

    Минусы:

    • Стоимость внедрения. Необходимо дополнительное оборудование и программное обеспечение.
    • Нехватка подготовленных специалистов. Расходы на обучение сотрудников it-отдела.

    Аннотация: В настоящей лекции рассматриваются основы проектирования кубов данных для OLAP-хранилищ данных. На примере показана методика построения куба данных с помощью CASE-инструмента.

    Цель лекции

    Изучив материал настоящей лекции, вы будете знать:

    • что такое куб данных в OLAP-хранилище данных ;
    • как проектировать куб данных для OLAP-хранилищ данных ;
    • что такое измерение куба данных ;
    • как факт связан с кубом данных ;
    • что такое атрибуты измерения ;
    • что такое иерархия ;
    • что такое метрика куба данных ;

    и научитесь:

    • строить многомерные диаграммы ;
    • проектировать простые многомерные диаграммы .

    Введение

    Технология OLAP - это не отдельно взятый программный продукт , не язык программирования . Если постараться охватить OLAP во всех его проявлениях, то это совокупность концепций, принципов и требований, лежащих в основе программных продуктов, облегчающих аналитикам доступ к данным.

    Аналитики являются основными потребителями корпоративной информации. Задача аналитика состоит в том, чтобы находить закономерности в больших массивах данных. Поэтому аналитик не будет обращать внимания на отдельно взятый факт , что в определенный день покупателю Иванову была продана партия шариковых авторучек, - ему нужна информация о сотнях и тысячах подобных событий. Одиночные факты в ХД могут заинтересовать, к примеру, бухгалтера или начальника отдела продаж, в компетенции которого находится сопровождение определенного контракта. Аналитику одной записи недостаточно - ему, например, может понадобиться информация обо всех контрактах точки продажи за месяц, квартал или год. Аналитика может не интересовать ИНН покупателя или его телефон, - он работает с конкретными числовыми данными, что составляет сущность его профессиональной деятельности.

    Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого ХД, лишены, однако, определенной гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить необходимое представление данных. Чем больше "срезов" и "разрезов" данных аналитик может исследовать, тем больше у него идей, которые, в свою очередь , для проверки требуют все новых и новых "срезов". В качестве такого инструмента для исследования данных аналитиком выступает OLAP .

    Хотя OLAP и не представляет собой необходимый атрибут ХД, он все чаще и чаще применяется для анализа накопленных в этом ХД сведений.

    Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в ХД. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP -анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном ХД. Важнейшим элементом использования OLAP являются метаданные , т. е. информация о структуре, размещении и трансформации данных . Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

    Таким образом, OLAP можно определить как совокупность средств многомерного анализа данных, накопленных в ХД . Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям. Однако при этом существует риск подвергнуть анализу данные, которые для этого анализа не пригодны.

    OLAP на клиенте и на сервере

    В основе OLAP лежит многомерный анализ данных . Он может быть произведен с помощью различных средств, которые условно можно разделить на клиентские и серверные OLAP -средства.

    Клиентские OLAP-средства представляют собой приложения, осуществляющие вычисление агрегатных данных (сумм, средних величин, максимальных или минимальных значений) и их отображение, при этом сами агрегатные данные содержатся в кэше внутри адресного пространства такого OLAP-средства .

    Если исходные данные содержатся в настольной СУБД , вычисление агрегатных данных производится самим OLAP -средством. Если же источник исходных данных - серверная СУБД , многие из клиентских OLAP -средств посылают на сервер SQL -запросы, содержащие оператор GROUP BY , и в результате получают агрегатные данные, вычисленные на сервере.

    Как правило, OLAP -функциональность реализована в средствах статистической обработки данных (из продуктов этого класса на российском рынке широко распространены продукты компаний Stat Soft и SPSS) и в некоторых электронных таблицах. В частности, неплохими средствами многомерного анализа обладает Microsoft Excel 2000. С помощью этого продукта можно создать и сохранить в виде файла небольшой локальный многомерный OLAP -куб и отобразить его двух- или трехмерные сечения.

    Многие средства разработки содержат библиотеки классов или компонентов, позволяющие создавать приложения, реализующие простейшую OLAP -функциональность (такие, например, как компоненты Decision Cube в Borland Delphi и Borland C++Builder). Помимо этого многие компании предлагают элементы управления ActiveX и другие библиотеки, реализующие подобную функциональность.

    Отметим, что клиентские OLAP -средства применяются, как правило, при малом числе измерений (обычно рекомендуется не более шести) и небольшом разнообразии значений этих параметров - ведь полученные агрегатные данные должны умещаться в адресном пространстве подобного средства, а их количество растет экспоненциально при увеличении числа измерений . Поэтому даже самые примитивные клиентские OLAP -средства, как правило, позволяют произвести предварительный подсчет объема требуемой оперативной памяти для создания в ней многомерного куба.

    Многие (но не все) клиентские OLAP -средства позволяют сохранить содержимое кэша с агрегатными данными в виде файла, что, в свою очередь , позволяет не производить их повторное вычисление . Отметим, что нередко такая возможность используется для отчуждения агрегатных данных с целью передачи их другим организациям или для публикации. Типичным примером таких отчуждаемых агрегатных данных является статистика заболеваемости в разных регионах и в различных возрастных группах, которая является открытой информацией, публикуемой министерствами здравоохранения различных стран и Всемирной организацией здравоохранения. При этом собственно исходные данные, представляющие собой сведения о конкретных случаях заболеваний, являются конфиденциальными данными медицинских учреждений и ни в коем случае не должны попадать в руки страховых компаний и тем более становиться достоянием гласности.

    Идея сохранения кэша с агрегатными данными в файле получила свое дальнейшее развитие в серверных OLAP-средствах, в которых сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером . Клиентские приложения могут запрашивать подобное многомерное хранилище и в ответ получать те или иные данные. Некоторые клиентские приложения могут также создавать такие хранилища или обновлять их в соответствии с изменившимися исходными данными.

    Преимущества применения серверных OLAP -средств по сравнению с клиентскими OLAP -средствами сходны с преимуществами применения серверных СУБД по сравнению с настольными: в случае применения серверных средств вычисление и хранение агрегатных данных происходит на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением. Отметим, что средства анализа и обработка данных масштаба предприятия, как правило, базируются именно на серверных OLAP -средствах, например, таких как Oracle Express Server , Microsoft SQL Server 2000 Analysis Services, Hyperion Essbase, продуктах компаний Crystal Decisions, Business Objects, Cognos, SAS Institute. Поскольку все ведущие производители серверных СУБД производят (либо лицензировали у других компаний) те или иные серверные OLAP -средства, выбор их достаточно широк, и почти во всех случаях можно приобрести OLAP - сервер того же производителя, что и у самого сервера баз данных.

    Отметим, что многие клиентские OLAP -средства (в частности, Microsoft Excel 2003, Seagate Analysis и др.) позволяют обращаться к серверным OLAP-хранилищам , выступая в этом случае в роли клиентских приложений, выполняющих подобные запросы. Помимо этого имеется немало продуктов, представляющих собой клиентские приложения к OLAP -средствам различных производителей.

    Технические аспекты многомерного хранения данных

    В многомерных ХД содержатся агрегатные данные различной степени подробности, например, объемы продаж по дням, месяцам, годам, по категориям товаров и т.п. Цель хранения агрегатных данных - сократить время выполнения запросов, поскольку в большинстве случаев для анализа и прогнозов интересны не детальные, а суммарные данные. Поэтому при создании многомерной базы данных всегда вычисляются и сохраняются некоторые агрегатные данные.

    Отметим, что сохранение всех агрегатных данных не всегда оправданно. Дело в том, что при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально (иногда говорят о "взрывном росте" объема данных). Если говорить более точно, степень роста объема агрегатных данных зависит от количества измерений куба и членов измерений на различных уровнях иерархий этих измерений . Для решения проблемы "взрывного роста" применяются разнообразные схемы, позволяющие при вычислении далеко не всех возможных агрегатных данных достичь приемлемой скорости выполнения запросов.

    Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. Поэтому в настоящее время применяются три способа хранения данных.

    • MOLAP ( Multidimensional OLAP) - исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах позволяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений . Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные.
    • ROLAP (Relational OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально и находились. Агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных.
    • HOLAP ( Hybrid OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные данные хранятся в многомерной базе данных.

    Некоторые OLAP -средства поддерживают хранение данных только в реляционных структурах, некоторые - только в многомерных. Однако большинство современных серверных OLAP -средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP -кубов.

    Отметим также, что подавляющее большинство современных OLAP -средств не хранит "пустых" значений (примером "пустого" значения может быть отсутствие продаж сезонного товара вне сезона).

    Основные понятия OLAP

    Тест FAMSI

    Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации ХД. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных. В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information) - быстрый анализ разделяемой многомерной информации, включающий следующие требования к приложениям для многомерного анализа :

    • Fast (Быстрый) - предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
    • Analysis (Анализ) - возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
    • Shared (Разделяемый) - многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
    • Multidimensional (Многомерный) - многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это ключевое требование OLAP);
    • Information (Информация) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

    Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах.

    Многомерное представление информации

    Кубы

    OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes) . Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей измерений (Dimensions) находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа.

    В качестве мер в трехмерном кубе, изображенном на рис. 26.1 , использованы суммы продаж, а в качестве измерений - время, товар и магазин. Измерения представлены на определенных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам. Чуть позже мы рассмотрим уровни группировки (иерархии ) подробнее.


    Рис. 26.1.

    "Разрезание" куба

    Даже трехмерный куб сложно отобразить на экране компьютера так, чтобы были видны значения интересующих мер. Что уж говорить о кубах с количеством измерений , большим трех. Для визуализации данных, хранящихся в кубе, применяются, как правило, привычные двумерные, т. е. табличные представления, имеющие сложные иерархические заголовки строк и столбцов.

    Двумерное представление куба можно получить, "разрезав" его поперек вдоль одной или нескольких осей (измерений ): мы фиксируем значения всех измерений , кроме двух, - и получаем обычную двумерную таблицу. В горизонтальной оси таблицы (заголовки столбцов) представлено одно измерение , в вертикальной (заголовки строк) - другое, а в ячейках таблицы - значения мер. При этом набор мер фактически рассматривается как одно из измерений : мы либо выбираем для показа одну меру (и тогда можем разместить в заголовках строк и столбцов два измерения ), либо показываем несколько мер (и тогда одну из осей таблицы займут названия мер, а другую - значения единственного "неразрезанного" измерения ).

    (levels). Например, метки, представленная на поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии , а в Microsoft OLAP Services 7.0 - только сбалансированные. Различными в разных OLAP-средствах могут быть и число уровней иерархии , и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений .

    Архитектура OLAP-приложений

    Все, что говорилось выше про OLAP, по сути, относилось к многомерному представлению данных. То, как данные хранятся, грубо говоря, не волнует ни конечного пользователя, ни разработчиков инструмента, которым клиент пользуется.

    Многомерность в OLAP-приложениях может быть разделена на три уровня.

    • Многомерное представление данных - средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные.
    • Многомерная обработка - средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос.
    • Многомерное хранение - средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов.

    Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур; процессор многомерных запросов в этом случае транслирует многомерные запросы в SQL-запросы, которые выполняются реляционной СУБД.

    Конкретные OLAP-продукты, как правило, представляют собой либо средство многомерного представления данных (OLAP-клиент - например, Pivot Tables в Excel 2000 фирмы Microsoft или ProClarity фирмы Knosys), либо многомерную серверную СУБД (OLAP-сервер - например, Oracle Express Server или Microsoft OLAP Services).

    Слой многомерной обработки обычно бывает встроен в OLAP-клиент и/или в OLAP-сервер, но может быть выделен в чистом виде, как, например, компонент Pivot Table Service фирмы Microsoft.