В данном модуле на основе мирового практического опыта разведки и эксплуатации месторождений различных видов минерального сырья (модули 4 и 5) рассматриваются их промышленные типы во взаимной связи с геологическими факторами размещения (модуль 2) и генетическими моделями (модуль 3). Знание промышленных типов месторождений, в особенности тех, которые определяют профиль специализации, необходимо бакалавру и горному инженеру в их профессиональной деятельности.

Промышленные типы месторождений металлических полезных ископаемых

Месторождения черных металлов Железные руды

Железо входит в состав железоуглеродистых сплавов (чугун, стать), ферромарганца, феррохрома, феррокремния и других сплавов с вольфрамом, ванадием и ниобием, играющих ведущую роль в технике. Исходным минеральным сырьем для их производства служит железная руда.

Главнейшими железосодержащими минералами, определяющими технологическую и промышленную ценность руд, являются магнетит Fe 3 (), (72,4% Fe); гематит Fe 2 (). } (70% Fc); сидерит FeC0 3 (48,3% Fc); гидрогетит (лимонит) HFe0 2 (62,9% Fe): гетит Fe0 2 H 2 0 (52,0-62,9% Fe); магно- магпетит (Mg, Fe)() Fe 2 (). s (24-38% Fe). Псевдоморфозы гематита по магнетиту называются мартитом, а сам процесс такого замещения - мартитизацией.

Требования металлургов к доменным рудам ниже, чем к мартеновским. Содержание железа в магнетитовых рудах должно быть более 50%, гидрогетитовых - более 45%. Для вредных примесей установлен верхний предел, содержащий: серы и фосфора - 0,3% каждого; меди - 0,2%; мышьяка - 0,07%; цинка и свинца - 0,1%; олова - 0,08%. В мартеновских рудах концентрации железа в магнетитовых, гематитовых, гидрогетитовых и смешанных рудах должны быть более 57%; вредных примесей не более: кремнезема - 5%; серы и фосфора - 0,15% каждого; меди, мышьяка, свинца, цинка, хрома, никеля - 0,04% каждого; марганца - 0,5%.

Для руд регламентируется кусковатость: доменные руды на 70-75% должны быть представлены классами 10-100 мм, а мартеновские на 70% - классами 10-250 мм. Руды, содержащие 80-92% класса 10 мм и не более 8-20% класса 10-20 мм, нуждаются в предварительном окусковании.

Важной характеристикой богатых руд является коэффициент основности (К.О.), представляющий собой отношение СаО + MgO / SiO., + Л1 2 0 3 . При К.О. 1,1 - к основным. Другим показателем качественных свойств руды служит кремневый модуль Si0 2 / Л1 2 0. ? , величина которого не должна быть ниже 2.

Бедные железные руды, нуждающиеся в обогащении, подразделяются на легко- и труднообогатимые. К легкообо- гатимым относятся железные руды магнетитового состава, прежде всего магнетитовые кварциты. Труднообогатимыми являются руды со скрытокристаллическими и коллоидальными железистыми образованиями. Магнетитовые руды обогащаются методами сухой и мокрой магнитной сепарации, магнетит-гематитовые - магнитно-флотационным (тонковкрапленные руды) и магнитно-гравитационным (крупновкрапленные руды) методами. При наличии в магнетитовых рудах промышленных концентраций апатита, ильменита, редких и редкоземельных металлов, сульфидов кобальта, меди и цинка, боратов и золота, они могут извлекаться флотацией отходов магнитной сепарации. При этом возможно производство апатитового, ильменитового, медного, кобальт-никелевого, бадделеитового, золотосульфидного и борагового селективных концентратов.

В процессе обогащения железных руд получают концентраты с содержанием железа от 48,0 до 69,5%, агломерат и окатыши. Попутные легирующие металлы (титан и ванадий) подобно полезным примесям (никель, кобальт и марганец), могут переходить в продукты металлургического предела, улучшая их свойства, или извлекаться из отходов.

На мировом рынке в 2010 г. цена руды с содержанием железа 67,4% составила 1,62 долл, за 1% Fe в 1 т (БИКИ от 19.03.2011).

Промышленные типы месторождений железа ассоциируют с магматическими, осадочными и метаморфическими формациями и комплексами, которые входят в состав почти всех генетических групп: магматической, карбонатитовой, скарновой, гидротермальной, осадочно-морской и континентальной, коры выветривания и метаморфогенной.

В магматической группе выделяется титано-магиети- товый комплекс, месторождения которого характеризуются в общем виде как кристаллизационные. Представителем карбонатитовой группы является месторождение Ковдор (см. рис. 3.6).

Группа скарновых магнетитовыхместорождений - одна из самых многочисленных. Из них добывают более 50 млн т товарной железной руды.

В качестве примера рассмотрим отрабатываемое карьером Канарское месторождение как самое крупное в Тур- гайской железорудной провинции (Кустанайская обл. в Казахстане). Месторождение сложено палеозойской вулканогенно-осадочной толщей андезитовых и пироксен- плагиоклазовых порфиритов и их пирокластов с прослоями туффитов, известняков, песчаников и покровами базальтов и андезитов (рис. 6.1). Эта толща смята в брахискладки и разбита сбрососдвиговыми нарушениями. В нижней части разреза выявлены небольшие штокообразные тела гранит-порфиров. На контакте с ними, а также с кварцевыми порфирами образовались пироксен-скаполитовые метасоматиты, по которым развились вкрапленные и массивные магнетитовые руды, сформировавшие пластообразные пологие рудные залежи протяженностью по простиранию до 3,5 км, по падению до 1700 м при мощности 60 м и более. В рудной залежи отмечены следующие средние содержания: железо - 44,9%; сера - 0,42%; фосфор - 0,23%; марганец - 0,15%. В повышенных концентрациях присутствует кобальт.

Рис. 6.1.

  • 1 - мезокайнозойские отложения платформенного чехла;
  • 2-4 - верхнепалеозойские отложения (2 - аргиллиты,
  • 3 - конгломераты, 4 - базальты); 5-9 - красноцветные отложения андреевской свиты (С,) (5 - песчаники и гравелиты, 6 - андезитовые афириты, 7 - гилерстен- плагиоклазовые порфирита, 8 - вулканические брекчии плагиоклазовых полифировых порфиригов, 9 - пирокссн- плагиоклазовые порфириты); 10-13 - отложения соколовской свиты (С,) (10 - слоистые туффиты, 11 - известняки,
  • 12 - ангидритсодержащие породы, 13 - вулканические туфы); 14-15 - отложения сарбайской свиты (С) (14 - вулканические брекчии крупновкрапленных порфиритов,
  • 15 - андезитовые порфириты); 16 - кварцевые порфириты;
  • 17 - фанит-порфириты; 18 - пироксен-скаполит-альбититовые метасоматиты; 19-20 - магнетитовые руды (19 - богатые,
  • 20 - бедные); 21 - мартитовые руды; 22 - разрывные нарушения

Группа гидротермальных месторождений включает крупные магномагнетитовые месторождения, ассоциирующие с траппами Сибирской платформы. Они приурочены к субвертикальным трубкам взрыва, с развитием в зонах сочленения глубинных разломов. Трубки выполнены ксенолитами вмещающих пород и субвулканическими телами основного состава.

В плане они имеют эллипсовидную форму с размером 2,3 х 0,6 км (Коршуновское месторождение) или 2x1 км (Тагарскос).

Наиболее крупным с разведанными запасами в 637 млн т, является Нерюндинское месторождение. Содержание железа в богатых рудах составляет более 45%.

Группа осадочных морских месторождений объединяет разведанные месторождения: сидеритовые комарово- зигазинской группы (Южный Урал), гематитовые (Нижне- Ангарское), сидерит-лептохлорит-гидрогетитовые (Керченское, Аятское). По прогнозным ресурсам железных руд в Западно-Сибирском железорудном бассейне эта группа месторождений не имеет себе равных. В пределах бассейна на площади в 66 тыс. км 2 скважинами вскрыт горизонт осадочных руд. На этой площади известны крупные месторождения, например Бакчарское, расположенное в 200 км к северо-западу от г. Томска. Среди песков и алевролитов залегают четыре горизонта оолитовых лептохлорит-гидроге- титовых руд (рис. 6.2). Бакчарский горизонт имеет мощность


Рис. 6.2.

  • 1 - пески, суглинки, галечники; 2 - пески; 3 - пески с гравием; 4 - алевриты; 5 - глины; 6 - глины пестроцветные; 7 - глины известковистые; 8 - бурые угли, лигниты; 9 - руда глауконит- сидеритовая; 10 - песчаники, алевролиты; 11 - песчаники рудные; 12 - руды оолитовые; 13 - кварцевые кератофиры
  • 26 м на площади 700 км 2 , среднее содержание руд следующее: железо - 37,4%; фосфор - 0,38-0,69%; ванадий - 0,13%. Запасы оцениваются в 28 млрд т. Мощность перекрывающих пород изменяется от 155 до 275 м. В них вскрыто пять водоносных горизонтов. Горно-геологические, гидро-геологические и географо-экономические условия на этом месторождении неблагоприятны для его освоения.

Другими условиями характеризуется месторождение Аятское (Казахстан). Здесь на небольшой глубине залегает выдержанный по простиранию и мощности пласт оолитовых лептохлорит-сидеритовых руд. Среднее содержание в рудах составляет: железо - 37,1%; оксид марганца - 0,5- 5,0%; сера - 0,36%; фосфор - 0,4%. Группа осадочных континентальных железорудных месторождений по запасам и промышленной значимости значительно уступает рассмотренной группе месторождений морских осадков. Примером скарнового-титано-магнетитового оруденения служит месторождение Малый Куйбас (рис. 6.3), расположенное в пределах Магнитогорского рудного поля. Оруденение представлено мощными крутопадающими жилами, окруженными орелом богатых вкрапленных ильминит- содержащих магнетитовых руд. В рудах содержится большое количество пирротина и титаномагнетита.

В группу коры выветривания входят бурожелезняковые зоны окисления месторождений - осадочных сидерито- вых (Бакальское, Южный Урал), скарновых (Высокогорское, Средний Урал), мартитовых (КМА). Значительную промышленную ценность представляют мартитовые руды в железистых кварцитах. Технологически сложными являются руды месторождения коры выветривания ультра- основных пород.

Группа метаморфогенных железорудных месторождений. Стойленское месторождение магнетитовых кварцитов зеленосланцевой фации метаморфизма сложено архейскими гнейсами и мигматитами, протерозойскими кварцевыми порфирами, амфиболитами михайловской и кварцито-слан- цами курской серий (рис. 6.4). В составе последней выделяют три свиты - нижнюю, среднюю и верхнюю. Железистые кварциты приурочены к средней свите. На неровной поверхности железистых кварцитов развиты горизонтально залегающие плащеобразные залежи богатых магнетит-мар- титовых и мартитовых остаточных руд. Их средняя мощность составляет 5-15 м. Запасы двух наиболее крупных

Рис. 63.

  • 1 - скарново-магнетитовые руды; 2 - плагиоклазовые и биотит- амфибол-плагиоклазовые метасоматиты; 3 - граниты;
  • 4 - габбро; 5 - субщелочные базальты;
  • 6 - дайки основного состава

залежей оцениваются в 153 млн т, среднее содержание железа - 55%. Запасы железистых кварцитов достигают 2,3 млрд т при среднем содержании железа 35,2%.

Месторождения железных руд по морфологии рудных тел, изменчивости их параметров и качеству руд соответствуют 1-3 группам классификации РФ. Разведка месторождений черных металлов ведется системами скважин. Основное промышленное значение имеют месторождения 1-й и 2-й групп. Месторождения 1-й группы (Керченское, Лиса-


Рис. 6.4.

  • 1 - терригенные отложения фансрозоя; 2 - диориты;
  • 3 - габбродиориты; 4-8- породы курской серии (4 - сланцы верхней свиты, 5 - железистые кварциты средней свиты,
  • 6 - сланцы средней свиты, 7 - сланцы нижней свиты,
  • 8 - песчаники и конгломераты нижней свиты); 9 - кварцевые порфириты, сланцы и амфиболиты михайловской серии;
  • 10 - гнейсы и мигматиты архея; И - богатые железные руды; 12 - тектонические нарушения

ковское, Аятское) представлены крупными горизонтально и полого залегающими пластовыми залежами с выдержанными мощностью и качеством руд. Скважины располагаются по квадратной сети со стороной: для категории запасов А - 200 м, В - 400 м, С[ - 800 м. Рудные тела месторождений 2-й группы (КМА, Кривбасс) дислоцированы, расстояния между скважинами сокращаются в 2-4 раза.

В рудах определяют содержание Fe, FeO, Fe магнетита, Si0 2 , MgO, CaO, Mn, P 2 0 5 , S, As и др.

Хромиты

В промышленных концентрациях хром находится в природных скоплениях минералов группы хромшпинелидов, образующих сплошные и густовкрапленные руды. Хром- шпинелиды, выражающиеся пятикомпонентной системой (Mg, Fe) 2+ (Al, Cr, Fe)| + 0 4 , характеризуются изоморфизмом входящих в нее металлических элементов. От этого зависит состав хромшпинелидов.

Основными минералами группы хромшпинелидов являются следующие минеральные виды: магнохромит MgFcCr 2 0 4 (Cr 2 O s - 50-65%), хромпикотит (35-55%) и алюмохромит (Mg, Fe)(CrAl) 2 0 4 (35-50%). Визуально они не различимы и называются хромитами.

Качественный состав хромшпинелидов и их содержание в руде обусловливают технологию ее переработки и области использования. Руды с низкими концентрациями хромшпинелидов или вредными примесями (СаО, Р) нуждаются в обогащении. Руды с содержанием Сг 2 0 3 > 45% и Si0 2 2,5 относят к металлургическим сортам. Их используют для производства феррохрома. Высокоглиноземистые руды с содержанием Сг 2 0 3 - 32-45%, А1 2 0 3 > 15% и СаО

В странах СНГ 95% запасов хромитов в основном металлургических сортов сосредоточено в кемпирсайской группе месторождений (Южный Урал, Казахстан), 5% высокоглиноземистых - на Сарановском месторождении (Средний Урал). По запасам хромитов Казахстан занимает 1-е место и экспортирует руды металлургических сортов. Мировые запасы хромитов оцениваются в 3,5 млрд т, добыча - более чем в 13 млн т, из них 60% приходится на Казахстан, ЮАР и Зимбабве, остальные - на Турцию, Филиппины и Индию. Цена 1 т хромитовой руды металлургических сортов составляет 185-250 долл., для огнеупоров - 370-450. Цена 1 т хрома составляет 13-14 тыс долл. (ВИКИ от 17.03.2011). Промышленные типы хромитовых месторождений ассоциируют с офиолитовыми габбро-анортозит-пироксеновым и протоплатформенным расслоенным мафит-ультрамафи- товым (базальтоидным) комплексами. Кроме того, известны незначительные по запасам хромитов элювиальные и элювиально-делювиальные россыпи.

Среди офиолитового комплекса по многочисленности месторождений хромитов металлургических сортов выделяется Кемпирсайский массив (Южный Урал, Казахстан). Из 160 месторождений массива 17 являются промышленными, из которых широко известно Алмаз-Жемчужина (рис. 6.5).

Высокохромистые руды локализованы в дунитовых обособлениях среди гарцбургитов глубоких горизонтов Центрального рудного поля. Высокоглиноземистые руды залегают в других рудных полях массива, в мелких дунитовых телах среди гарцбургитов более высоких стратиграфических горизонтов. Рудные тела имеют залегание, близкое к горизонтальному, и наклонное (до 50°) на восток. Часть этих тел склоняется на север, другие - на юг. Жилообразные, реже шлирообразные тела с четкими контактами имеют размеры по протяженности от десятков метров до 1,5 км при мощности до 180 м. Они разделяются обособлениями дунитов, иногда перидотитов и субширотными разрывными нарушениями разбиты на отдельные перемещенные блоки.

Рис. 6.5.

  • 1 - дуниты; 2 - гарцбургиты; 3 - дунит-гарцбургиты;
  • 4 - хромитовые руды; 5 - отработанная часть рудного тела;
  • 6 - разрывные нарушения; 7 - контур карьера

Текстура руд преимущественно вкрапленная, массивная и нодулярная. Среди вкрапленных руд по насыщенности вкрапленниками выделяют густо-, средне- и редковкрап- ленные, а по размерам зерен хромшпинелидов - мелко- (до 1 мм), средне- и крупнозернистые (> 3 мм).

На месторождении Алмаз-Жемчужина содержание Сг 2 0 3 в сплошных рудах составляет 58%, густовкрапленных - 50-57%, средневкрапленных - 37-49% и редковкрап- ленных - 28-36% при следующих средних содержаниях: Сг 2 0 3 - 49,05%; Si0 2 - 8,1%; СаО - 0,42%; Р - 0,002%.

Примером смешанных бедных и богатых высокохромистых руд служит месторождение Центральное, расположенное в массиве Рай-Из на полярном Урале. Месторождение залегает в краевой части крупного дунитового тела и гарц- бургитов, насыщенных шлирово-полосчатыми выделениями дунитов, и представляет собой хромитоносную зону протяженностью до 1700 м, шириной 400-450 м (рис. 6.6).

Месторождения дифференцированных базалътоидных интрузивов протоплатформ сосредоточены на юге Африки в Бушвельдском дополите, имеющем площадь 20 тыс. км 2 и мощность 7,5 км, и в Великой Дайке, протягивающейся в близмеридиональном направлении более чем на 500 км при мощности 3-10 км. В Бушвельдском расслоенном интрузиве в вертикальном разрезе выделяют несколько зон. Одна из них, Критическая, мощностью около 1 км, сложена норитами с прослоями пироксенитов, анортозитов и перидотитов, в которых сосредоточены страгиформные залежи хромитов.

В норитах распространены ликвационные платиноносные медно-никелевые месторождения (горизонт Мерен- ского). Залегающие выше Критической зоны габбронориты и анортозиты Главной зоны мощностью от 0,2 до 1,8 м прослеживаются на многие километры. Качество руд низкое. Отношение Сг 2 О э к FeO изменяется от 1,5 до 2,0. Запасы хромитов оценены в 500 млн т при содержании Сг 2 0 3 50%.

Месторождения хромовых руд соответствуют 2-й и 3-й группам классификации ГКЗ РФ. Ко 2-й группе относятся месторождения (Алмаз-Жемчужина) с крупными линзо- и жилообразными залежами протяженностью по простиранию более 300 м. Скважины располагаются по следующей сети: 40-80 х 20-60 м для запасов категории В; 80-120 х 40-80 м для запасов категории С,. В рудах определяют содержания Cr 2 0 3 , FeO, Si0 2 , СаО, Р 2 0 3 . Предельно допустимые относительные среднеквадратичные погрешности анализов ) Сг 2 0 3 по классам содержаний 40-60, 20-40, 10-20 и 5-10% соответственно составляют 1,2, 1,8, 2,5 и 3,0%, т.е. чем выше содержание, тем меньше Р тчх.

Рис. 6.6. Геологический план (а) и разрезы (б)месторождения Центральное, массив Рай-Из (по Б. В. Перевозчикову):

  • 1 - дуниты; 2 - гарцбургиты со шлирово-полосчатыми выделениями дунитов (а - до 10%, б - 10-30%, в - 30-50%, г - свыше 50%); 3 - хромитовые тела и их номера;
  • 4 - диабазы; 5 - талькиты; 6 - геологические границы;
  • 7 - зона Полойшорского разрыва; 8 - тектонические разрывы и их номера; 9 - полосчатость гарцбургитов; 10 - склонение хромитовых и дунитовых тел с указанием угла (градус);
  • 11 - линии геологических разрезов
  • БИКИ - Бюллетень иностранной коммерческой информации.

Месторождение (field) - это, определение

Месторождение - это сосредоточение различных полезных ископаемых на поверхности или в недрах Земли. Месторождения могут выходить на поверхность Земли (открытые месторождения) или быть погребёнными в недрах (закрытые, или «слепые», месторождения). По условиям образования месторождения подразделяются на серии (экзогенные, магматогенные и метаморфогенные месторождения), а серии, в свою очередь, — на группы, классы и подклассы. Бассейн полезного ископаемого — замкнутая область непрерывного или почти непрерывного распространения пластовых осадочных полезных ископаемых, связанных с определённой формацией горных пород. Месторождения разных полезных ископаемых ищут и находят различными способами, систематически и нередко бессистемно. В настоящее время любые рациональные поиски начинаются с подготовки топографической основы, используемой при составлении геологической карты, которая затем трансформируется в структурно-металлогеническую карту и карту полезных ископаемых района.

2. Минеральные полезные ископаемые (черные, цветные, благородные и редкие металлы и др.).

3. Неметаллические полезные ископаемые ( для химической промышленности , строительные материалы и др.).

С экономической точки зрения всякое месторождение ха­рактеризуется прежде всего качеством полезного ископаемого и его количественными запасами.

Виды месторождений полезных ископаемых

Выделяют следующие виды месторождений полезных ископаемых:

1. Месторождения горючих ископаемых .

1.1 Нефтяное месторождение — совокупность залежей черного золота на определённой территории. Обычно занимает несколько сотен километров, для добычи используются нефтедобывающие платформы, которые строятся в процессе бурения. Основные параметры, характеризующие нефтяные месторождения: геологическое строение площади месторождения, расположение локальной структуры относительно структур более высокого порядка, наличие различных структурных планов, характеристика продуктивных горизонтов и флюидоупоров, типы и количество ловушек и залежей , фазовое состояние углеводородов в залежах, запасы, их плотность по площади и др. Нефтяное месторождение может объединять несколько структурных этажей, что очень усложняет его разведку и разработку, и требует изучения соотношений в плане контуров залежей между собой и с контурами структур. По числу залежей нефтяные месторождения могут быть однозалежными или многозалежными, по фазовому содержанию углеводородов — нефтяные, газонефтяные, газоконденсатно-нефтяные.

Примером данного вида месторождений может служить супергигантское нефтегазовое месторождение в Мексике - Чиконтепек (22,1 млрд.тонн), находящихся на восточном побережье Мексики. Открыто в 1926 году. На новом крупнейшем месторождении черного золота планируется пробурить 17 тыс. скважин, что позволит значительно увеличить добычу нефти и ее за рубеж.

1.2 — совокупность газовых залежей, приуроченных к общему участку поверхности и контролируемых единым структурным элементом.

Газовые месторождения разделяются на многопластовые и однопластовые. В разрезе многопластового газового месторождения на одной площади имеется несколько газовых залежей, расположенных одна под другой на разной глубине. Некоторые газовые залежи имеют самостоятельный газоводяной контакт. В отдельных интервалах разреза одного и того же газового месторождения могут быть залежи различных типов, а газоносные пласты представлены коллекторами разнообразного генезиса — кавернозными, межгранулярными или трещинными. Подавляющая часть газового месторождения пространственно обобщена, группируется в зонах газонакопления и распространена в газоносных или газонефтеносных областях платформенного (сводовых поднятий, внутриплатформенных впадин и др.), геосинклинального (межгорных впадин, срединных массивов) и переходного (предгорных прогибов и впадин) типов. Природным газом называют газовую смесь, образующуюся при разложении органических веществ. Он залегает в земных недрах в газовом состоянии в виде отдельных скоплений, в виде нефтяной шапки нефтегазовых месторождений, а также в растворённом состоянии (в черного золота и в воде).

vipstd.ru - геологический портал

welding-l.ru - большая энциклопедия сварочных работ

bibliotekar.ru - электронная библиотека

odrag.ru - все о драгоценных металлах


Энциклопедия инвестора . 2013 .

Синонимы :

1. ПРИНЦИПЫ ОТКРЫТОЙ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ.. 4

1.1 Типы разрабатываемых месторождений и залежей. 4

1.2. Виды открытых горных разработок. 7

1.3 Виды и размеры карьерных полей. 9

1.4 Периоды открытых горных работ. 12

1.5 Понятие о режиме и этапах горных работ. 14

2. ТЕОРИЯ ВСКРЫТИЯ РАБОЧИХ ГОРИЗОНТОВ.. 18

2.1. Порядок формирования грузопотоков. 18

2.2. Предпосылки формирования грузопотоков. 20

2.3. Начальные этапы развития горных работ. 22

2.4. Вскрывающие горные выработки. 23

2.5. Способы вскрытия рабочих горизонтов карьера. 25

2.6. Трассы вскрывающих выработок. 27

2.7. Формы трасс капитальных выработок. 29

2.8. Схемы и системы вскрывающих трасс. 31

2.9. Схемы развития железнодорожных путей карьера. 33

2.10. Схемы автомобильных дорог карьера и их основные параметры 35

2.11. Скользящие и полустационарные съезды.. 37

2.12. Проведение траншей при автомобильном и конвейерном транспорте 40

2.13. Проведение траншей. 41

2.14. Объемы капитальных траншей и полутраншей (по проф. Е.Ф. Шешко) 46

2.15. Разрезные траншеи и котлованы.. 51

3. СИСТЕМЫ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 54

3.1. Классификация систем открытых горных работ. 54

3.2. Классификации систем разработки по направлению перемещения и способу производства вскрышных работ. 59

3.3. Разделение карьерного поля на выемочные слои. 60

3.4. Высота и устойчивость уступов. 62

3.5. Конструкции и устойчивость бортов карьеров. 66

3.6. Выбор системы разработки. 68

3.7. Основные принципы и закономерности формирования рабочей зоны карьера. 68

3.6. Продольные и поперечные системы разработки. 75

3.7. Веерные и кольцевые системы разработки. 76

4. СИСТЕМЫ РАЗРАБОТКИ ГОРИЗОНТАЛЬНЫХ И ПОЛОГИХ МЕСТОРОЖДЕНИЙ. ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ. 79

4.1 Вскрытие рабочих горизонтов при сплошных системах разработки 79

4.2. Способы вскрытия. 84

4.3. Условия применения углубочных систем разработки. 86

4.4. Варианты развития горных работ. 89

4.5. Конструкции и параметры берм. 92

5. ВСКРЫТИЕ РАБОЧИХ ГОРИЗОНТОВ ПРИ УГЛУБОЧНЫХ СИСТЕМАХ РАЗРАБОТКИ.. 93



5.1. Вскрытие внешними капитальными траншеями. 93

5.2. Простые, тупиковые и петлевые трассы.. 96

5.3. Спиральные трассы.. 102

5.4. Характеристика схем и систем вскрывающих трасс. 106

6. ГОРНО-ГЕОМЕТРИЧЕСКИЙ АНАЛИЗ КАРЬЕРНЫХ ПОЛЕЙ.. 110

6.1. Горно-геометрический анализ карьерных полей при горизонтальных и пологих залежах. 112

6.2 Горно-геометрический анализ карьерных полей для крутопадающих и наклонных месторождений со сложными условиями залегания по методу А.И. Арсентьева * 114

6.3 Преобразование графиков горно-геометрического анализа в календарный график. 117

6.4. Построение рационального календарного графика горных работ 122

6.5. Определение области возможного регулирования графика режима горных 125

6.5. Технологические способы регулирования режима горных работ 129

6.6. Определение рационального направления развития горных работ карьера при разработке однородных месторождений по методу А.И. Арсентьева 138

7. ТЕОРИЯ КОМПЛЕКСНОЙ МЕХАНИЗАЦИИ ОТКРЫТЫХ ГОРНЫХ РАБОТ 142

7.1. Общие сведения. 142

7.2. Принципы комплексной механизации. 143

7.3. Технологическая классификация комплексов оборудования. 145

7.4. Структурная классификация звеньев механизации. 151

7.5. Основы комплектации выемочного и транспортного оборудования 154

8. ТЕХНОЛОГИЧЕСКИЕ КОМПЛЕКСЫ ДОБЫЧИ СТРОИТЕЛЬНЫХ ГОРНЫХ ПОРОД.. 156

8.1. Технологические комплексы добычи и переработки песчано-гравийных пород. 156

8.2. Технологические комплексы производства щебня. 160

8.3. Технологические комплексы добычи природного камня. 165

ЛИТЕРАТУРА.. 167


1. ПРИНЦИПЫ ОТКРЫТОЙ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Типы разрабатываемых месторождений и залежей

Объектами открытой горной разработки являются месторождения полезных ископаемых. По отраслевому признаку различают открытую разработку угольных и рудных месторождений, месторождений строительных горных пород, цементного сырья, горно-химического сырья и др.

Разрабатываемые месторождения полезных ископаемых залегают в весьма разнообразных природных условиях.

Типы месторождений различаются прежде всего по характерным геометрическим признакам.

1. Залежи полезных ископаемых по форме могут быть: изометрическими - развитыми более или менее одинаково во всех направлениях (массивные залежи, штоки, гнезда и т. п., рис. 1.1, в, а);

плитообразными - вытянутыми преимущественно в двух направлениях при относительно небольшой мощности (пласты и пластообразные залежи, рис. 1.1, а, б, г, ж);

трубообразными и столбообразными - вытянутыми преимущественно в одном направлении;

промежуточными и переходными между указанными формами (линзы, жилы, седловидные залежи, складки, перегибы, тектонически нарушенные свиты пластов) (рис. 1.1, а, е).

Форма залежей предопределяет форму карьерных полей.

2. Рельеф поверхности месторождения может быть равнинным (рис. 1.1, а), в виде склона возвышенности (рис. 1.1, б), в виде возвышенности (см. рис. 1.1, в), холмистым (рис. 1.1, г) и, наконец, залежь может находиться под водой. От рельефа поверхности зависит порядок разработки и возможные средства механизации.

3. В зависимости от положения относительно господствующего уровня поверхности и глубины залегания различают месторождения:

поверхностного типа - непосредственно выходящие на поверхность или расположенные под наносами небольшой мощности (до 20-30 м, рис. 1.1, а)

глубинного типа - расположенные значительно ниже господствующего уровня поверхности, мощность толщи пустых пород может составлять от 40 до 250 м (рис. 1.1, д, е) такие месторождения могут разрабатываться открытым или подземным способом, что экономически обосновывается;

высотного типа - расположенные выше господствующего уровня поверхности (рис. 1.1, б, в) месторождения могут быть объектами открытых или подземных разработок; высотно-глубинного типа - частично расположенные выше и ниже господствующей поверхности (рис. 1.1, ж).

Залегание может быть согласным или несогласным с рельефом поверхности; залежь может занимать всю или часть возвышенности (склона горы). От положения залежи относительно земной поверхности зависят размеры карьера по глубине и в плане, а также применяемые технические средства, особенно транспортные.

4. По углу падения различают залежи:

пологие, характеризующиеся слабонаклонным (до 8-10°) и волнистым залеганием основной части залежи (см. рис. 1.1, а, г); их частным случаем являются горизонтальные залежи;

наклонные - с углами падения от 8-10 до 25-30° (см. рис. 1.1,6);

крутонаклонные - с углами падения более 25-30°(см. рис. 1.1, ж)

крутые - с углами падения 56-90° (см. рис. 1.1,5);

сложного залегания, характерного при антиклинальных и синклинальных складках (см. рис. 1.1, е) и резких геологических нарушениях; оно отличается переменным направлением падения залежи.

Такое разделение залежей принято на основе технологии ведения открытых горных работ. Так, размещение отвалов в выработанном пространстве карьера возможно при разработке горизонтальных и пологих залежей (рис. 1.2, а) ив особых случаях - при разработке вытянутых наклонных и круто наклонных залежей. При разработке наклонных залежей по условиям устойчивости конечных бортов карьера и размещения вскрывающих выработок обычно не требуется выемка вскрышных пород лежачего бока залежи (рис. 1.2, б). При крутом падении необходимо производить разработку вмещающих пород как висячего, так и лежачего боков залежи (рис. 1.2, в).

По мощности залежи разделяются на:

весьма маломощные, малой мощности, средней мощности; мощные; весьма мощные.

Такое разделение связано с зависимостью числа одновременно отрабатываемых добычных уступов от мощности залежи. Условия и порядок разработки горизонтальных и наклонных (крутонаклонных) залежей неодинаковы, поэтому численно различны для этих залежей и показатели одних и тех же классов мощности, и показатели одних и тех же классов мощности.

простые залежи (см. рис. 1.1, б, ж) с однородным строением, без существенных прослойков и включений; в этом случае все полезные ископаемые залежи вынимают совместно (валовый способ выемки);

сложные залежи (см. рис. 1.1, а, г), содержащие наряду с кондиционным полезным ископаемым некондицион­ные его сорта, а также прослойки или включения пустых пород с четко выраженными контактами; в этом случае необходима раздельная (селективная) разработка кондиционного и некондиционного полезного ископаемого и пустых пород;

Рассредоточенные залежи (рис. 1.1, з), имеющие сложное строение, при котором кондиционное и некондиционное полезное ископаемое и пустые породы распределяются в толще земной коры без четкой закономерности и выраженных контактов; выбор раздельного или валового способа выемки полезного ископаемого производится после детальной эксплуатационной разведки.

5.Качество полезного ископаемого в залежи может быть распределено:

Равномерно, когда качество полезного ископаемого, соответствующее требованиям потребителя, примерно одинаково в пределах залежи; в этом случае выемка (валовая или раздельная) на разных участках залежи может производиться независимо, без усреднения;

неравномерно, когда распределение качества неодинаково по глубине или в плане залежи; в этом случае необходимо планировать одновременную выемку в разных частях залежи, иметь несколько рабочих выемочных участков и усреднять качество.

6. По преобладающим типам пород месторождения могут быть представлены:

Скальными вскрышными породами и полезным ископаемым;

Разнородными покрывающими породами и скальными (полускальными) полезным ископаемым и вмещающими породами; в этом случае покрывающая залежи мощная толща представлена чередующимися мягкими, плотными, полускальными и и скальными породами;

Мягкими и плотными покрывающими породами и скальными или полускальными полезным ископаемым и вмещающими породами;

Полускальными вскрышными породами и полускальным или весьма плотным полезным ископаемым;

Мягкими вскрышными породами и разнородным полезным ископаемым;

Мягкими вскрышными породами и мягким или плотным полезным ископаемым.

Перечисленные факторы оказывают решающее влияние на выбор технических средств, порядок ведения и возможность производства открытых горных работ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Залежь - всякое элементарное, единичное скопление нефти и газа.

Указанная выше классификация применяется в нефтегазопромысловой практике совместно с генетической, отражающей геометрию залежей. Одной из таких генетических классификаций является классификация И.О.Брода, в основу которой он положил типы природных резервуаров, положение залежей на структуре, взаимное расположение нефти, газа и воды, коллектора, покрышки и экрана в «головной» части резервуара. И.О.Брод все залежи согласно генетической классификации разделил на три группы и дал им название согласно типов природных резервуаров.

Группа пластовых залежей нефти и газа

Сформировалась данная группа в ловушках пластового природного резервуара и содержит четыре типа залежей.

Пластово -сводовая залежь. Эта залежь получила свое название по типу природного резервуара (пластовый) и по положению на структуре (в своде). Залежь располагается в сводовой, наиболее высокой части антиклинали и других структур и сформировалась в ловушке складчатых дислокаций.

Пластовая тектонически экранированная залежь сформировалась в ловушке разрывных дислокаций антиклиналей, диапировых складок и на моноклиналях. Название свое она получила по типу природного резервуара (пластовый) и по названию тектонического экрана (разрывное тектоническое нарушение), ограничивающего залежь в «головной» ее части. В результате разрыва сплошности пласта-коллектора и смещения его блоков относительно друг друга на амплитуду, превышающую толщину пласта-коллектора, «головная» часть коллектора закупорилась непроницаемыми породами с образованием ловушки разрывных дислокаций, в которой впоследствии сформировалась пластовая тектонически экранированная залежь.

Пластовая стратиграфически экранированная залежь сформировалась в ловушках стратиграфических (угловых) несогласий антиклиналей, диапировых складок и на моноклиналях и имеет сходное с предыдущей залежью строение за исключением только того, что рассматриваемая залежь имеет стратиграфический экран. Чаще всего стратиграфические залежи формируются под плоскостью стратиграфического и углового несогласия, сопровождаемого размывом.

Пластовая литологически экранированная залежь сформировалась в литологических ловушках, образование которых обусловлено выклиниванием пластового природного резервуара вверх по его восстанию или резкой сменой пласта-коллектора на неколлектор. Пластовые литологически экранированные залежи широко распространены как в пределах антиклиналей, так и в составе диапировых складок, рифогенных и эрозионных массивов и моноклиналей.

Массивные залежи .

Массивная залежь в структурном (тектоническом) выступе залегает в сводах антиклиналей, брахиантиклиналей, куполовидных поднятий, объединяемых в общее понятие - структурный (тектонический) выступ. Литологически рассматриваемая залежь, чаще всего, приурочена к коллекторам мощной карбонатной толщи, имеющей хорошую пористость и проницаемость за счет трещин и каверн (вторичная пористость).

Массивная залежь в биогенном (рифогенном) выступе сформировалась в своде рифогенного выступа (рифа), образованного живыми организмами и сложенного карбонатными скелетами (остатками) морской фауны и флоры - различными органогенными известняками (известняк коралловый, известняк-ракушечник и т.д.).

Группа литологически ограниченных залежей. Формируется эта группа залежей в литологически ограниченных со всех сторон резервуарах неправильной формы. Литологически ограниченные залежи встречаются в природе значительно реже пластовых и массивных, коллектор имеет неправильную форму и обычно сложен песками, алевритами, песчаниками, алевролитами, реже другими породами (карбонатными, метаморфическими) и окружен со всех сторон практически непроницаемыми для нефти и газа породами, в которых не может происходить циркуляция этих флюидов. Форма литологически ограниченных залежей может быть самой разнообразной: линзовидной, рукаво- и шнуркообразной, гнездообразной. Контролируются описываемые залежи литологически ограниченными резервуарами соответствующей формы. Литологически ограниченные со всех сторон залежи редки в природе и имеют, чаще всего, скромные запасы углеводородов, энергетический потенциал их также низкий.

Пластово-сводовые залежи в месторождениях Казахстана

1)Приграничное -- нефтяное месторождение в северной части Прикаспийской впадины. Находится в 90 км к северо-западу от г. Уральск. Выявлено в 1993 году при испытании параметрической скважины П-4.

Запасы составляют 30 млн тонн нефти. Залежь приурочена к пластам песчаников пашийского горизонта, тип залежи пластовый сводовый . Ловушка, по сейсмическим данным, образована антиклиналью, входящей в Приграничную приподнятую зону северо-западной ориентировки с предполагаемым тектоническим экранирование по восстанию. Коллекторами являются песчаники с пористостью по ГИС 7-14% при средней пористости 10,0%. В качестве покрышки выступают глины и аргиллиты тиманского горизонта толщиной около 5 м. Дебит нефти из опробованного интервала 4442-4457 м (абс.4257-4272 м) составил 12 м3/сут, газа - 2,3 тыс.м3/сут (штуцер 4 мм). Нефть плотностью 805 кг/м3 содержит (%% мас.): фракций, выкипающих до 200оС - 43, выкипающих до 330оС - 70, меркаптанов - 0,01, сульфидов и асфальтенов - следы. Содержание серы не определялось. Подошвенные воды не вскрыты. Месторождение находится в стадии опоискования. Размеры структуры 4,7x6,7 к, амплитуда - 175 м. Толщина пласта 10 м, эффективная нефтенасыщенная толщина 8,4 м. Водонефтяной контакт залежи ценивается 191 м.

2)Макат -- нефтяное месторождение в Казахстане. Расположено в Макатском районе Атырауской области (адм. центр -- Макат) в 100 км к востоку от города Атырау. Месторождение открыто в 1913 году.

Нефтяные отложения нижнего мела, средней юры и пермотриаса, где выделены нефтяные горизонты неокомский и газонефтяной.

Залежи пластовые, сводовые, тектонически экранированные.

Плотность нефти 803--895 кг/мі. Нефти малосернистые (0,25-0,28 %), малопарафинистые (0,25-0,8 %).

3)Тажигали -- газонефтяное месторождение находится в Атырауской области Казахстана, в 80 км к юго-западу от железнодорожной станции Кульсары. Месторождение открыто в 1956 г. В тектоническом отношении представляет собой трехкрылую солянокупольнуто структуру.

Нефтеносность связана с меловыми и юрскими отложениями западного и восточного крыльев. В отложениях мела установлены четыре горизонта и один горизонт в средней юре. Неокомский горизонт газонефтяной, остальные -- нефтяные.

Глубина залегания продуктивных горизонтов меняется в пределах от 382 до 1002 м. Залежи пластовые, сводовые, тектонически экранированные с высотами 10-40 м. Нефтеносные пласты сложены терригенными породами, коллектора поровые.

Состав газа: метан 59,8-62,4 %, этан 7 %, пропан 5,3 %, азот + редкие 14,8-29,2 %, водород 0,4 %.

Месторождение находится в консервации.

4) Каражанбас -- нефтяное месторождение в Мангистауской области Казахстана, на полуострове Бузачи. Относится к Северо-Бузашинской нефтегазоносной области.

Открыто в 1974. Залежи на глубине 228-466 м. Дебиты нефти 1,2-76,8 м3/сут. Плотность нефти 939-944 кг/мі, содержание серы 1,6-2,2. Характерной особенностью нефтей является наличие в них ванадия и никеля. Начальные запасы нефти оцениваются в 70 млн. тонн. В структурном отношении представлено двумя полусводами: юго-западным и северо-восточным, ограниченными с юга и юго-запада тектоническими нарушениями. Выявлены две залежи в батском ярусе средней юры. Залежи пластовые, сводовые тектонически экранированные. Глубина их залегания 548-659 м.

Центр добычи -- город Актау.

В настоящее время месторождение разрабатывается АО "Каражанбасмунай" (офис в г. Актау). Акционерами Каражанбасмунай является CITIC и казахская нефтяная компания Разведка Добыча «КазМунайГаз» по 50% соответственно. Добыча нефти 2008 году составила 2 млн. тонн.

5)Газовое месторождение Придорожное расположено в Созакском районе Шымкентской области, в 260 км к югу от г. Жезказган. Поисковое бурение начато в 1972 г., в котором при проходке скважины 3 с глубины 2456 м из песчаников фаменского возраста, был получен аварийный фонтан углеводородного газа дебитом до 1628 тыс.м3/сут. Приурочено к приразломной брахиантиклинальной складке субширотного простирания. Месторождение состоит из двух пластово-сводовых , тектонически экранированных залежей, приуроченных к песчаникам и алевролитам фаменского возраста и трещинноватым известнякам серпуховского яруса. Глубина фаменской залежи в своде составляют 2400 м. ГВК принят на отметке - 2285 м, при высоте залежи 140 м. Общая толщина продуктивного горизонта - 129 м, эффективная - 37,5 м. Коллекторы трещинно-порового типа имеют пористость 7%, при крайних значениях от 3 до 18%, проницаемость - 0,038 мкм2. Коэффициент газонасыщенности - 0,7. Пластовое давление 25,8 МПа, температура пласта 86оС. Дебит газа на штуцере диаметром 4,9 мм составил 74,4 тыс.м3/сут. Покрышкой для залежи являются галогенные осадки фаменского возраста, толщиной до 450 м. Нижнесерпуховская залежь вскрыта на глубине 1178 м. Высота залежи по принятой отметке ГВК - 1101 м и равна 107,5 м. Общая толщина газового горизонта - 102 м, эффективная - 71,4 м. Коллекторы представлены плотными трещиноватыми мелко- и среднекристаллическими известняками с низкой матричной пористостью. Емкостно-фильтрационные свойства обусловлены развитием трещиноватости. Пористость составляет 3,78%. Наиболее высокие значения коллекторских свойств и дебиты газа отмечаются в зоне субширотного разлома, осложняющего присводовую часть складки. Начальный дебит - 96 тыс.м3/сут. на штуцере диаметром 22,6 мм. Начальное пластовое давление - 15,1 МПа, температура пласта 59оС. Покрышкой залежи служат одновозрастные сульфатно-терригенные (ангидриты, аргиллиты) отложения толщиной до 298 м. Газы фаменской залежи характеризуются следующим составом, %: метан 62,2-70,4, этан 1,2-1,76, пропан 0,11-0,12, изобутан 0,02, н-бутан 0,012-0,04, пентан + высшие 0,06, азот + редкие 27,6-34,2, гелий 0,21, углекислый газ 0,3-0,85. Режим залежей упругогазоводонапорный.

Пластово-тектонически экранированные залежи

1) Месторождение Узень

Открыто в 1961 г. Приурочено к слабо нарушенной крупной брахиантнклинальной складке северо-западного простирания, осложненной серией локальных куполовидных поднятий. Доказана газоносность нижнего и верхнего мела; нефтеносность и нефтегазоносность верхней и средней юры. В меловом комплексе выделено 12 газоносных горизонтов; в юре -13 нефтеносных и нефтегазоносных (рис. 70). Суммарная высота продуктивного этажа равна 1500 м.

Залежи по типу относятся преимущественно к пластовым, сводовым, однако в юрской толще встречаются отдельные тектонически экранированные и литологические залежи.

Продуктивные горизонты представлены песчаными и песчано-алевролитовыми пластами с пористостью 30.6%, проницаемостью 0.2-0.4 Дарси.

Эффективная толщина песчаных пластов и пачек в юрской толще колеблется в пределах 3-167 м. Дебиты нефти изменялись от 1 до 81 м"/сут.. газа 8-230 тыс. м"/сут. Начальное пластовое давление 11.2-19.4 МПа, температура 57-84”С. Плотность нефти 844-874 кг/м 3 , содержание серы 0,16-0,2%, парафина 16-22,6%

2) Каламкас. Газонефтяное месторождение Каламкас открыто в 1976 г. Приурочено к слабо нарушенной брахиантиклинальной складке широтного простирания, в пределах которой доказана газоносность 6 пластов в неокоме, двух - в апте и 7 газонефтяных и нефтяных горизонтов в верхней и средней юре (рис 39). Продуктивность разреза доказана в интервале 550-900 м. В процессе эксплуатационного разбуривания дополнительно выявлено 5 стратиграфических залежей, связанных преимущественно с верхнеюрской толщей (рис. 39). Все остальные залежи пластовые, сводовые, слабо нарушенные с элементами литологического и тектонического экранирования. Основной покрышкой над юрскими зачежамн является 50-ти метровая пачка глин, залегающая в основании неокома.

Продуктивные пласты-коллекторы представлены песчаными и алевролитовыми породами с пористостью 23-29%, проницаемостью 0,105-1,468 Дарси, эффективными толщинами 4,2-10,3 м.

Газонефтяной контакт установлен для всех юрских горизонтов практически на одной отметке, водонефтяной контакт по горизонтам также резко не меняется, в связи с чем продуктивную юрскую часть можно рассматривать в качестве единой массивно-пластовой залежи.

Начальные дебиты нефти 26,4-62,1 м"/сут. на 7 мм штуцере; начальное давление 6,5-9,6 МПа. температура 39-44"С. Плотность нефти 902-914 кг/м", содержание серы в нефти до 2%. Нефть содержит промышленные концентрации ванадия и никеля.

Геологический разрез Каламкас

Структурная карта

3)Месторождение Дунга

Открыто в 1968 г. и приурочено к периклинальной части Беке-Башкудукской мегантиклинали, осложненной субмсридиональными нарушениями (рис. 73).

Установлена продуктивность келловейского яруса верхней юры и отложений апта, представленных песчаниками с пористостью 16-21% и проницаемостью 0.01 Дарси.

Залежи по характеру насыщения нефтяные и газовые в келловее. нефтяная в аптских отложениях. По типу ловушек залежи пластовые, сводовые, тектонически экранированные. Эффективная толщина продуктивных юрских пластов 4.2-6,5 м.

4) Месторождение Каракудук

Открыто в 1971 г. Приурочено к слабо нарушенной антиклинальной складке. Доказана нефтеносность средней и верхней юры, где установлено 9 продуктивных горизонтов (рис. 102). Нефтяные залежи пластовые, сводовые, тектонически и литологически экранированные. Песчаные пла- е I ы-коллекторы характеризуются пористостью 13-24%. проницаемостью 3-20 Мд и эффективными толщинами 9,6-45 м. Плотность нефти 808-866 кг/м\ Начальное пластовое давление 25,3-29.7 М Па. температура 78-111 °С. Дебиты нефти 25,3-155 м"/сут. на 9 мм штуцере

5)Месторождение Арыскум

Открыто в 1985 г, в Кзыл-Ординской области в 120 км к северу от железнодорожной станции Жусалы в 320 км от нефтепровода Омск-Павлодар-Чимкент.

Приурочено к приразломной антиклинальной складке северо-западного простирания с амплитудой 120 м. Газовая залежь с нефтяной оторочкой связана с нижним неокомом, в котором выделяется два продуктивных горизонта М-1 и М-П (рис. 138). Промышленно продуктивен горизонт М-П. Единичные газовые выбросы отмечались при бурении скважин из верхней юры.

Залежь пластовая, сводовая, тектонически эранированная с общей высотой 108 м. в гом числе нефтяной оторочки 27 м. Коллектор представлен слабо сцементированными гравелитами, песчаниками, песками и алевролитами с пористостью 17.4% и проницаемостью 0,054 мкм".

Коэффициент нефтенасьиценности 0,66, газонасыщенности 0,69. Начальное пластовое давление 10,49 МПа, температура 44°С.

Начальные дебиты нефти на штуцере 7,7 мм достигали 61 м"/сут., газа - 70 тыс. мУсут.

Плотность нефти в нефтяной оторочке 854 кг/м". Содержание серы до 0,46%, парафина 9.7-27,2%, ас- фал ьтенов и смол до 16,65%.

Свободный газ содержит метана 93,9%, этана 2.0%, пропана 1,4%, бутана 0.65%, гелия 0,01%, азота 0,54%.

Пластово-литологически экранированные

1)Болганмола

Месторождение выявлено в 1964 г. Структура Болганмола (рис. 28) представляет собой полусводовое поднятие, экранированное по восстанию и латералн примыканием к соляному ядру (рис. 28). Залежь пластовая, литологически ограниченная. Продуктивные отложения вскрыты на глубине 1828 м.

Коллекторами являются песчаники и алевролиты нижнего триаса с пористостью до 20%. Эффективная нефтенасыщенная толщина равна 3 м.

Дебит нефти с примесью воды составил 7 м"/сут. при динамическом уровне 1140 м. Нефть плотностью 839 кг/м", малосернистая (0,13%), высокопарафинистая (15,4%), смолистая (17%), с содержанием фракций, выкипающих до 200°С, -17,5%.

2)Месторождение Тюбеджик

Открыто в 1981 г. Приурочено к слабо нарушенной брахантиклинальной складке, в нижнемеловых отложениях которой выявлены 2 нефтяных залежи пластового сводового типа с элементами тектонического и лнтологи- ческого экранирования (рис. 68).

Коллекторы представлены песчаниками и глинистыми алевролитами с пористостью до 27% и эффективными толщинами до 6 м.

Начальные дебиты нефти 2,4-7.2 м 3 /сут переливом. Нефть плотностью 911 кг/м 5 , малосернистая, слабопара- финистая, смолистая (13,7%).

3)Месторождение Жетыбай

Открыто в 1961 г. Приурочено к слабо нарушенной брахантиклинальной складке северо-западной ориентировки. Доказана нефтегазоносность верхней и средней юры, в которых установлено 13 продуктивных горизонтов. представленных переслаиванием песчаников, алевролитов и глин (рис. 69). Суммарная высота продуктивного этажа равна 700 м. Залежи преимущественно пластовые, сводовые, в единичных случаях массивно-пластовые, а также лнтоло! ичеекп экранированные. По характеру насыщения одна залежь газоконденсатная, остальные газонефтяные и нефтяные. Пористость коллекторов 16-22%. проницаемость 0,06-0.239 Дарси.

Начальные пластовые давления 17.5-25.0 МПа, температура 78-103°С. Плотность нефти 830-870 кг/м 3 , содержание серы 0.1 -0.28%. парафина 17,2-25%. Содержание стабильного конденсата в газоконденсатной залежи I горизонта составляет 76 г/м".

4)Месторождение Коныс

Открыто в 1989 г. в Тереньозекском районе Кзыл-Ординской области, в 140 км севернее ж.-д. станции Жусалы, в 150 км северо-западнее г. Кзыл-Орда. Месторождение приурочено к брахнантиклинали субмери- диснального простирания, осложненной двумя сводами (рис. 137). По кровле горизонта M-II северный свод оконтурен изогипсой - 1070 м, южный - 1040 м. Южная часть южного свода и северо-западное погружение крыла северного свода отличаются зонами литологического замещения коллекторов.

Западное крыло южного свода узким и неглубоким прогибом соединяется с полусводом, ограниченным с севера и запада тектоническими нарушениями. Эта часть структуры называется Южным Конысом.

Во вскрытом разрезе выявлены две залежи. Нефтегазовая залежь связана с горизонтом M-И арыскумской свиты нижней части неокомских отложений, а нефтяная (горизонт Ю-0) - с верхнеюрскими.

Залежи пластовые, сводовые, литологически экранированные.

Продуктивный горизонт М-11 залегает на глубине 963 м. Литологически он представлен песчаниками и алевролитами. Общая высота нефтяной залежи 30 м, газовой 45 м. Нефтенасыщенная толщина пласта 32,2 м, I азонасыщениая 25 м. Коэффициен т нефтенасышенности 0,68, газонасыщенности 0,65. ГНК и ВНК установлены на отметках - 1060 и -1088 м.

Коллектор терригенный, поровый с пористостью 19,6%, проницаемостью 0,015 мкм2. Горизонт Ю-0 представлен песчаниками с пористостью 21-24%. Эффективная и нефтенасыщенная толщина пласта 4.55 м, коэффициент иефтенасыщенности 0,57. Высота залежи 50 м.

Нефти с плотностью 830 кг/м3, малосернистые (0,16-0.19%), сильнопарафинистые (12-15%), смолистые (9,3-10,7%).

Пластовое давление 11,2-11,35 МПа, температура 56°С. Дебиты нефти 70,1-72,7 м"/сут. на 7 мм штуцере.

Попутный газ метановый (83,2-95.3%), содержит 4.58-16,6% тяжелых углеводородов. В нем также присутствует незначительное количество сероводорода (0,02%), азота (0,01-0,2%) и углекислого газа.

Газ газовой шапки этановый, его состав, %: метан 91,43; этан 5,17; тяжелые 3,31, содержание азота, углекислого газа и сероводорода - следы. В пределах Южного Коиыса в газе присутствует конденсат плотностью 700 кг/м5, его содержание 98 г/м". Конденсат содержит 0,02% серы и 2,6% парафина.

5) Мест-е ойракты

Открыто в 1971 г. Расположено в 135 км к северу от г. Тараз. По нижнекаменноугольной толще структура характеризуется куполовидной формой с размерами 9x9 км и амплитудой 120 м; по нижней перми это асимметричная брахиантиклиналь меридиональной ориентировки размерами 21x10 км и амплитудой 160 м (рис. 155).

Месторождение содержит три газовых залежи пластово-сводового и литологическн экранированного типа в турнейских, нижневизейских и нижне-пермских отложениях.

Коллекторы представлены песчаниками и алевролитами с пористостью 11,3-18,6% и проницаемостью до 3 мд.

Пластовое давление 10-28,2 МПА. температура 42-72°С.

Дебиты газа максимально достигали 128 тыс м"/сут на шайбе 19,1 мм. Газы тяжелые, преимущественно углеводородные в каменноугольной толще (свыше 90% углеводородной фракции) и азотно-углеводородные в нижней перми, где концентрация метана по площади колеблется в пределах 24-75%.

Пластово-стратиграфически экранированные

1)Каражанбас

Месторождение открыто в 1974 г. Приурочено к нарушенной брахиантиклинальной складке субширот- ного простирания. Доказана нефтеносность неокома (пять нефтяных залежей) и батского яруса средней юры (два нефтяных горизонта).

Залежи в неокоме пластовые, сводовые, нарушенные, а также стратиграфически экранированные; в юре - пластовые, литологически экранированные (рис. 38). Коллекторами являются песчаные и алевро- литовые пласты с пористостью 27-29%, проницаемостью 0,013-0,351 Дарси и нефтёнасышенными толщинами 2-14,6 м.

Начальные дебиты 1.2-76,8 м"/сут., начальное пластовое давление 3-5,75 МПа. температура 25-37°С. Плотность нефти 939-944 кг/м", содержание серы 1,6-2,2%, парафина 0,7-1,4%. Нефть высокосмолистая, содержит пятиокись ванадия до 350 г/т.

Геологический разрез месторождения Каражанбас

Структурные карты

2) Жанатан

Открыто в 1992 г. В тектоническом отношении представляет антиклинальную складку субмсридианаль- ного простирания с размерами 17x6,2 км при амплитуде более 450 м (рис, 45),

Установлена продуктивность терригенных нижнекаменноугольных отложений. Коллекторами являются песчаники и алевролиты с пористостью 7-16% и проницаемостью 0,042-0,00048 мкм". Эффективная нефтенасыщенная толщина составляет 6,6-33 м, коэффициент нефтенасыщенности 0,7. Дебит нефти (скв. 7) составил 7,2-8,3 мУсут. Нефть имеет плотность 852 кг/м3, содержит 0,32% серы, до 13% парафина и 3% смол и асфальтенов.

Краткое рассмотрение выявленных месторождений свидетельствует о их многообразии как в подсоле- гюм докунгурском палеозое, так и в надсолевых отложениях. Это многообразие обусловлено типами ловушек, характеристиками резервуаров и промысловых параметров залежей, фазовым состоянием УВ, количественными концентрациями сопутствующих компонентов - металлов, сероводорода, серы, величинами запасов нефти и газа. Дифференциация месторождений четко просматривается не только в пределах впадины в целом, но и в границах геологических областей и даже районов.

3)Месторождение Кызылкия

Открыто в 1986 г. Расположено в Кзыл-Ординской области в 40 км к западу от месторождения Кумколь.

Приурочено к антиклинальной складке субмеридиопального простирания, осложненной в центральной и южной частях поднятием фундамента выше уровня продуктивных горизонтов (рис. 139).

Установлена газонефтяная залежь в нижнем неокоме (М-И), а также получены незначительные притоки нефти из коры выветривания фундамента. Залежь пластовая, стратиграфически и литологически экранированная, высотой 85 м.

Нефтегазонасыщенные толщины изменяются от 2,7 м до 5,2 м. Открытая пористость песчано-алевролито вых коллекторов 14-18%, проницаемость 0,001-0,067 мкм: . Нефтенасыщенность 0,79. газонасыщенность 0,75.

Максимальный дебит нефти на 7 мм штуцере достигал 158,4 м"/сут., дебит газа - 42 тыс. м"/сут. на 6 м\ штуцере.

Начальное пластовое давление 15.3-15,8 МПа, температура 60-62°С.

Нефть плотностью 805 кг/м". Содержание метана в газе 79,45%, азота 8,6%, тяжелых углеводородов до 10%

Массивные залежи

1)Тенгиз (каз. Те?із ) -- нефтегазовое месторождение в Атырауской области Казахстана, в 350 км к юго-востоку от г.Атырау. Относится к Прикаспийской нефтегазоносной провинции. Открыто в 1979 году.

Первооткрывателями месторождения Тенгиз являются Жолдаскали Досмухамбетов, Булекбай Сагингалиев, Булат Еламанов, Асабай Хисметов, Кумар Балжанов, Валентин Авров, Махаш Балгимбаев, Орынгазы Исказиев которые были удостоены Государственной премии Республики Казахстан.

6 апреля 1991 года в эксплуатацию был введен нефтегазовый комплекс - Тенгизский нефтегазоперерабатывающий завод и промысел, что положило начало промышленной добыче на данном месторождении.

Залежи углеводородов расположены на глубине 3,8--5,4 км. Залежь массивная, рифогенного строения. Нефтеносность связана с отложениями средне-нижнекаменноугольного и девонского возрастов.

Коэффициент нефтенасыщенности 0,82. Начальный газовый фактор 487 мэ/мэ, начальный дебит нефти 500 мі/сут при 10 мм штуцере. Начальное пластовое давление 84,24 МПа, температура 105°С. Плотность нефти 789 кг/м 3 . Нефть сернистая 0,7%, парафинистая 3,69%, малосмолистая 1,14%, содержит 0,13% асфальтенов.

Извлекаемые запасы месторождения оцениваются от 750 млн до 1 млрд. 125 млн тонн нефти. Прогнозируемый объем геологических запасов составляет 3 млрд. 133 млн тонн нефти. Запасы попутного газа оцениваются в 1,8 трлн. мі.

2)Королевское - нефтяное месторождение находится в Атырауской области Казахстана, в 150 км к юго-востоку от г. Атырау и в 20 км к северо-востоку от нефтяного гиганта - месторождения Тенгиз. Поисковое и разведочное бурение начато в 1982 г., ставшем годом открытия месторождения.

Продуктивные горизонты установлены в надсолевом и подсолевом комплексах. Нефтяная залежь надсолевого комплекса в верхнемеловых отложениях связана с солянокупольной структурой. Продуктивность подсолевого комплекса приурочена к палеозойской антиклинальной складке тектоно-седиментационного типа.

Палеозойская нефтяная залежь связана с артинскими породами нижней перми и кабонатными отложениями карбона. Залегает на глубине 3952 м. ВНК принят на отметке -4800 м. Залежь массивная. Продуктивная толща сложена известняками.

Нефть очень тяжёлая, плотность 965 кг/мі, сернистая (2%), малопарафинистая (0,52%), содержит 2,2 % асфальтенов.

Месторождение находится в разведке по подсолевым отложениям. Залежь надсолевого комплекса законсервирована.

Общие геологические запасы составляют 188 млн тонн нефти.

3)Кенкияк -- нефтяное месторождение в Темирском районе Актюбинской области Казахстана, в 220 км к югу от Актобе. Относится к Восточно-Эмбинской нефтегазоносной области. В районе месторождения имеется аэропорт.

Нефть преимущественно легкая с плотностью 821--850 кг/мі, содержит серы 0,24-1,24 %, парафинов 1,53-6,76 %, смол 1,2-8,5 %. Для докунгурского продуктивного этажа характерно аномально высокое пластовое давление, составляющее 67,6 МПа в нижней перми и 79,6 МПа в карбоне. Пластовая температура достигает максимальных значений 98 °C. Дебиты нефти 18,4-150 мі/сут. Залежь массивная.

На месторождении разрабатываются залежи нефти в надсолевой толще. Подсолевая часть разреза завершена разведкой.

Суммарный продуктивный этаж на месторождении охватывает интервал от 160 до 4300 м. Разрез представлен переслаиванием песчаников разной степени цементации, алевролитов, гравелитов, глин и аргилитов. Отложения среднего карбона представлены известняками. Строение структуры по надсолевому и подсолевому комплексам резко отличаются.

1958 -- выявлена надсолевая структура

1959 -- открыто месторождение, приуроченное к соляному куполу (в надсолевом разрезе выявлено 9 нефтяных горизонтов)

1971 -- открыты залежи в нижнепермских отложениях (выделено 5 продуктивных горизонтов)

1979 -- установлена массивная нефтяная залежь в карбонатной среднего карбона

4) Карачагана м к , Карашыганак, каз. ?арашы?ана? -- чёрный залив -- нефтегазоконденсатное месторождение Казахстана, расположено в Западно-Казахстанской области, вблизи города Аксай. Относится к Прикаспийской нефтегазоносной провинции.

Открыто в 1979 году. Промышленное освоение началось в середине 1980-х производственным объединением «Оренбурггазпром» Министерства газовой промышленности СССР. В 1989 году министерство было преобразовано вГазодобывающий государственный концерн «Газпром», а в 1993 году -- в Российское акционерное общество «Газпром».

Карашыганакское поднятие представлено рифовой постройкой высотой до 1,7 км. Залежь нефтегазоконденсатная, массивная. Высота газоконденсатной части достигает 1420 м, толщина нефтяного слоя равна 200 м. Продуктивными отложениями является от верхнего девона до нижней Перми. Давление газа в пласте составляет 600 атмосфер.

5) Толкын. Открыто в 1992 г. В структурном отношении представляет собой антиклиналь юго-запад-севсро-восточ- ного простирания размерами 6x2,1 км с амплитудой 110 м (рис. 40).

Разрез представлен терригенно-карбонатной толщей среднего карбона, перми, триаса и терригенными отложениями юры, мела и кайнозоя.

Нефтегазовая залежь высотой 150 м выявлена в породах артинского яруса нижней перми. Залежь массивная.

Коллектор продуктивного горизонта смешанный, карбонатный с открытой пористостью 13% и проницаемостью 0,0149 мкм 2 . Общая толщина продуктивного горизонта 147 м. эффективная 132 м, нефтенасыщенная 10,4 м, газонасыщенная 122 м. Коэффициенты нефте- и газонасыщенности 0,62 и 0,38 соответственно.

Начальное пластовое давление 43,2 МПа, температура 105°С. Дебит нефти 46 м"/сут., газа 189,7 тыс. м"/сут. на 8 мм штуцере.

Нефть легкая, плотностью 840 кг/м 3 , малосернистая 0,23%, слабопарафинистая 1,1%, содержит небольшое количество 3.1% асфальтенов и силикагелевых смол. Газонасьиценность пластовой нефти 346 м"/м".

Состав растворенного газа, в %: метан 48,6, этан 13. пропан 10.9, нзобутан 5,4, н-бутан 8,7.

Газ газовой шапки имеет плотность по воздуху 0,76. В его составе преобладает метан 89.74%

Нефтегазоконденсатное месторождение ТолкынСтруктурная карта

Литологически ограниченные

1)Месторождение Тасбулат

Открыто в 1965 г. Приурочено к слабо нарушенной брахиантнклинальной складке субширотного простирания. Доказана продуктивность оленекского яруса нижнего триаса, средней и верхней юры (рис. 72). Продуктивные отложения триаса представлены карбонатно- геррнгеннымн породами, в которых выявлены три залежи: "А" - нефтяная, высотой - 5 м; "Б" - нефтегазоконденсатная с высотой газовой части 207 м и нефтяной 47 м; "В" - газоконденсатная с высотой 46 м.

В юрской толще, представленной переслаиванием песчано-алевролитовых пород с глинами, установлены залежи в горизонтах Ю-1. Ю- II. Ю-Ш, Ю-IV. Ю-V. Ю-VI, Ю-IX. Ю-Х. Ю-XI. К литологически экранированным отнесены залежи горизонтов Ю-IX и Ю-Х. остальные - к типу пластовых, сводовых.

Пористость юрских коллекторов 14-19%, проницаемость 0,018-0.042 Дарси. Эффективные толщины 4-44 м. Дебиты нефти 8-90 м"/сут., конденсата 28,8-38,4 м"/сут.

Начальное пластовое давление 19-23.2 МПа. температура 83-103°С. Нефть плотностью 834-865 кг/м", парафина до 36,7%. Метана в газе 84%, тяжелых углеводородов 12.5-15%. Стабильного конденсата 64.5-78.1 г/м" в юрских залежах и 111 г/м" - в триасе.

Заключение

залежь месторождение нефть газ

Природный резервуар понятие более широкое, чем коллектор, ибо он образуется соотношением коллектора с вмещающими его плохо проницаемыми породами (покрышками), обладает определенной формой и емкостью, единой гидродинамической системой и пластовой энергией.

По соотношению коллектора с ограничивающими его плохо проницаемыми породами И.О.Брод предложил выделять три основных типа природных резервуаров: пластовые, массивные и литологически со всех сторон ограниченные.

Залежь - всякое элементарное, единичное скопление нефти и газа. Формируются залежи в ловушках различного типа, принимая их форму. В нефтяной геологии разработаны различные классификации залежей. Одной из таких классификаций является классификация залежей нефти и газа по фазовому состоянию, находящихся в них углеводородов. Н.А.Еременко выделил пять типов таких залежей:

нефтяная с растворенным газом и без него;

нефтяная с газовой шапкой и конденсатом;

газовая с конденсатом и нефтяной оторочкой;

газоконденсатная (имеет выход конденсата более 30 см3/м3);

газовая (содержит в основном «сухой» газ - метан).

Массивные залежи сформировались в массивных однородных и неоднородных резервуарах. Типы залежей данной группы названы И.О.Бродом по типу природного резервуара (массивный) и по типу локального выступа: структурный (тектонический), биогенный (рифогенный) и эрозионный, в которых рассматриваемые залежи и залегают.

Список использованной литературы

1) Даукеев С.Ж.,Уженов Б.С., Абдулин А.А., Глубинное строение и минеральные ресурсы Казахстана, 2007.

2) Желтов Ю.П. Разработка нефтяных месторождений: Учебник для вузов. М.: Недра, 1986.

3) Танирбергенов А.Г. Учебно-методический комплекс дисциплины студента. Алматы: КазНТУ, 2004.

Размещено на Allbest.ru

...

Подобные документы

    Понятие природного газа и его состав. Построение всех видов залежей нефти и газа в ловушках различных типов. Физические свойства природных газов. Сущность ретроградной конденсации. Технологические преимущества природного газа как промышленного топлива.

    контрольная работа , добавлен 05.06.2013

    Закономерности и изменения свойств нефти и газа в залежах и месторождениях. Давление и температура в залежах. Закономерности изменения свойств нефти и газа по объему залежи. Изменение пластовых давления и температуры в процессе разработки залежи.

    контрольная работа , добавлен 04.12.2008

    Подходы к моделированию процесса открытия месторождения. Алгоритм, учитывающий размер залежи и элемент случайности при открытии залежи. Сравнение результатов имитационного моделирования процесса открытия залежей по величине запасов нефти и газа.

    презентация , добавлен 17.07.2014

    Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа , добавлен 19.06.2011

    Основные технико-экономические показатели геолого-разведочных работ. Поиски и разведка нефтяных и газовых месторождений. Нефтегазовый комплекс России. Состав и параметры нефти. Месторождения нефти и газа. Типы залежей по фазовому составу. Понятие ловушки.

    презентация , добавлен 10.06.2016

    Понятие и структура природного резервуара, его разновидности, основные составляющие и отличительные признаки. Типы ловушек и их значение в природном резервуаре. Этапы формирования первичный и вторичных залежей. Сейсмическая съемка преломления воды.

    контрольная работа , добавлен 08.03.2010

    Количество добытой нефти и газа на Тишковском месторождении, его литология и стратиграфия. Нефтеносность петриковской и елецко-задонской залежи. Подсчет и пересчет запасов нефти и растворенного газа межсолевых и подсолевых залежей месторождения.

    курсовая работа , добавлен 17.11.2016

    Образование нефти и газа в недрах Земли. Физические свойства пластовых вод, залежей нефти, газа и вмещающих пород. Геофизические методы поисков и разведки углеводорода. Гравиразведка, магниторазведка, электроразведка, сейсморазведка, радиометрия.

    курсовая работа , добавлен 07.05.2014

    Изучение методов системы разработки месторождений нефти и газа. Определение рациональной системы извлечения нефти из недр. Выбор оборудования для хранения нефти после добычи из залежей, а также для транспортировки. Описание основных видов резервуаров.

    курсовая работа , добавлен 11.11.2015

    Условия залегания продуктивных пластов. Состав и физико-химические свойства пластовых жидкостей и газа месторождения. Характеристика запасов нефти. Режим разработки залежи, применение системы поддержания пластового давления, расположение скважин.

Классификация месторождений полезных ископаемых как природных объектов должна удовлетворять ряду принципов их обоснованного подразделения: наличия цели разделения; системности или соответствия рангов классифицируемых объектов, например нельзя сравнивать рудопроявления и месторождения; непрерывности классификационных ячеек; выдержанности оснований подразделений; невозможности вхождения одного и того же объекта в разные классификационные ячейки; непрерывности подразделений; предсказуемости свойств классифицируемых объектов и др. Исходя из них, существуют различные по целям и основаниям группировки месторождений, чему посвящена обширная литература. Из практически важных надо отметить подразделения месторождений по следующим критериям; форме рудных тел и рудоносных зон; степени сложности их строения — классификация Государственной комиссии по запасам (ГКЗ) I ; видам минерального сырья

Виды месторождений

Эндогенные месторождения. Их называют также гипогеннымн и связывают с внутренней энергией Земли, В данной серии выделяют шесть групп. Две группы — магматическая и карбонатитовая — образуются из расплавов в процессах их дифференциации и ликвации, связанных со средними, основными и ультраосновными магмами. Четыре остальные группы — пегматитовая, альбитит-грейзеновая, скарновая и гидротермальная — ассоциируют с кислыми, средними и щелочными магматическими комплексами и формировались на позднеинтрузивной и цостинтрузиеной стадиях их становления.

Экзогенные (поверхностные, гипергенные) месторождения формировались вследствие механической, химической и биохимической дифференциации вещества земной коры под влиянием солнечной энергии. Здесь выделяются три группы: выветривания, месторождения в которой связаны с древней и современной корой выветривания; осадочную, руды которой возникли при механической, химической, биохимической и вулканической дифференциации минеральномго вещества в бассейнах седиментации, включающую россыпи и эпигенетическую, рудообразонание в которой происходило в осадочно-породных бассейнах в связи с деятельностью грунтовых или артезианских подземных вод

Метаморфогенные месторождения возникают в глубинных зонах земной коры под воздействием подствующих там высоких давлений и температур. В этой серии выделяют две группы рудных образований: метаморфизоваиную, включающую преобразованные в новой термодинамической обстановке ранее возникшие месторождения любого генезиса, и собственно метаморфическую, образовавшуюся впервые в результате метаморфогенного преобразования минерального вещества или обусловленную процессами гидротермально-метаморфогенного концентрирования рассеянных рудных элементов или их соединений.

Важным способом характеристики особенностей рудной минерализации различных территорий является представление о геологических и рудных формациях.

Геологические формации — это естественные комплексы парагенетически связанных во времени и пространстве горных пород и ассоциирующих с ними минеральных месторождений. При изучении формаций учитываются процессы, исследуемые литологией; петрологией и тектоникой. Формации выделяются эмпирически на основании многократной, статистически установленной повторяемости определенных параге-незисов пород в аналогичных структурах. По отношению к процессам оруденения различают следующие группы геологических формаций:

1.рудогенерирующие, в которых промышленные скопления руд представляются естественным компонентом;

2.рудоносные — хотя и содержат рудные месторождения, но связь их с оруденением не определена;

3.рудообразущие, являющиеся источником энергии при формировании месторождений;

4.рудовмещающие — содержат продукты рудогенеза более древних, чем данная формация, эпох.

В 70-х годах XX в. возникло учение о рудных формациях, разработанное В. А. Кузнецовым, В. Н. Козе-ренко, Д. И. Горжевским, Р. М. Константиновым и др. Под рудной формацией понимали естественное сообщество рудных образований, объединяемых между собой сходными парагенетическими ассоциациями главнейших рудных минералов и тектоно-магматическимн условиями проявления, а также близкими особенностями развития рудного процесса.

В рудные формации объединяются близкие по составу месторождения, формировавшиеся в сходных тектоно-магматических условиях, определяемых единством тектонического режима. Выделяемые формации могут быть конвергентными, поскольку они определяются главнейшими минеральными парагенезисами и геологической обстановкой, влиявшими на текстурно-структурные и другие особенности руд. Названия формаций определяются двумя главными характеристиками ─ составом ведущих минералов или элементов (металлов) и происхождением рудной массы (генезисом). Например, медно-никелевая, сульфидно-касситеритовая гидротермальная и т. д. Закономерное нахождение эндогенных рудных формаций выделяют в качестве генетических рядов, представляющих собой естественную ассоциацию рудных формаций, связанных с одной магматической формацией или определённым магматическим комплексом. В основу систематики рядов положен тектонический принцип и учёт источников рудного вещества.

Отдельная рудная формация и их ряды служат основной еденицей классификации месторождений полезных ископаемых и определяют металлогенический тип рудных районов и провинций. Один или несколько рядов рудных формаций, объединённых по их связи с определёнными типами магм и различными источниками вещества, выделяют в качестве генетических серий. Известны серии формаций, связанных с магмами: ультраосновного состава, базальтоидного, траппами, внутрикоровыми гранитоидами и т.д.

Для региональной оценки рудоносности используют понятие о металлогенической формации, под которой понимают комплекс парегенетически связанных горных пород магматического, осадочного и метаморфического происхождения и ассоциированных с ним месторождений полезных ископаемых, обусловленных единством происхождения в определённых структурно-формационных условиях.

Запасы полезных ископаемых,─ количество минерального сырья в недрах Земли, на её поверхности, на дне водоёмов и в объёме поверхностных и подземных вод, определяемое по данным геологической разведки.

Эти данные позволяют вычислить объём тел полезных ископаемых, а при умножении объёма на плотность позволяют определить запасы полезных ископаемых в весовом исчислении. При подсчёте запасов жидких и газообразных полезных ископаемых (нефть, подземные воды, горючий газ), помимо объёмного метода, применяется способ расчёта запасов по притокам в скважинах. Для некоторых месторождений полезных ископаемых, кроме того, подсчитывается количество содержащихся в них запасов ценных компонентов, например запасы металлов в рудах. Запасы полезных ископаемых в недрах измеряются в м 3 (строительные материалы, горючие газы и др.), в тоннах (нефть, уголь, руды), в килограммах (благородные металлы) или в каратах (алмазы). Величины запасов полезных ископаемых обладают различной достоверностью их подсчёта, зависящей от сложности геологического строения месторождений и детальности их геологической разведки.

По степени достоверности определения запасов они разделяются на категории. В СНГ действует классификация запасов полезных ископаемых с разделением их на четыре категории: А, В, C1 и C2. На сегодняшний день практически для всех людей стиральная машина автомат является чем- то обычным из всего перечня бытовой техники, которая должна иметь среднестатистическая семья. Огромную популярность среди русскоязычного населения получили стиральные машины Vestel, которые славятся своей долговечностью и тихой работой.

К категории А принадлежат детально разведанные запасы полезных ископаемых с точно определёнными границами тел полезных ископаемых, их формами и строением, обеспечивающими полное выявление природных типов и промышленных сортов минерального сырья в недрах месторождения, а также геологических факторов, определяющих условия их добычи. К категории В относятся предварительно разведанные запасы полезных ископаемых, с примерно определёнными контурами тел полезных ископаемых, без точного отображения пространственного положения природных типов минерального сырья. В категорию C1 включают запасы разведанных месторождений сложного геологического строения, а также слабо разведанные запасы полезных ископаемых на новых площадях или на площадях, непосредственно прилегающих к детально разведанным участкам месторождений; они подсчитываются с учётом экстраполяции геологических данных детально разведанных участков месторождений.

К категории C2 относятся перспективные запасы, выявленные за пределами разведанных частей месторождений на основании толкования их геологического строения, с учётом аналогии сходных и подробно разведанных тел полезных ископаемых.

Из зарубежных наиболее распространена американская классификация запасов полезных ископаемых. В ней выделяются три категории запасов: 1) измеренные (measured), определяемые на основании замеров в горных выработках и буровых скважинах, 2) выверенные (indicated), подсчитываемые при распространении данных горных работ и бурения за их пределы, 3) предполагаемые (inferred), оцениваемые по общим геологическим данным. По правилам, существующим в странах СНГ , месторождения полезных ископаемых могут быть введены в эксплуатацию при условии, если они обладают определённым соотношением запасов полезных ископаемых различных категорий.

Группы месторождений по сложности строения

По степени сложности геологического строения выделяются три группы месторождений с различным соотношением категорий полезных ископаемых.

К 1-й группе относятся месторождения полезных ископаемых простого геологического строения с равномерным распределением ценных компонентов; для этой группы не менее 30 % запасов должно быть разведано по категории А и В, в том числе не менее 10 % по категории А.

Ко 2-й группе принадлежат месторождения сложного геологического строения (не менее 20 % запасов должно быть разведано по категории В).

К 3-й группе относятся месторождения очень сложного геологического строения и исключительно невыдержанного содержания ценных компонентов; проектирование горнодобывающих предприятий и выделение капитальных вложений на их строительство или реконструкцию допускается при наличии запасов категории C1.

Балансовые и забалансовые запасы

Запасы полезных ископаемых, по их пригодности для использования в народном хозяйстве разделяются на балансовые и забалансовые.

К балансовым принадлежат такие запасы полезных ископаемых, которые целесообразно разрабатывать при современном уровне техники и экономики; к забалансовым относятся запасы полезных ископаемых, которые из-за их малого количества, низкого качества, сложных условий эксплуатации или переработки ныне не используются, но в дальнейшем могут явиться объектом промышленного освоения. Для определения показателей балансовых запасы полезных ископаемых производят специальные расчёты, характеризующие промышленные кондиции минерального сырья (минимальную мощность тел полезных ископаемых, минимальное промышленное содержание ценных компонентов в полезных ископаемых и максимально допустимые включения горных пород); когда залежь полезного ископаемого постепенно сливается с окружающими её горными породами, рассчитывают т. н. бортовое содержание, то есть содержание ценного компонента, по которому проводится граница между телом полезного ископаемого и вмещающими его горными породами. В странах СНГ утверждение кондиций для подсчёта запасов, проверка правильности подсчёта запасов, распределения их по балансовой и забалансовой группам, а также утверждение запасов и определение подготовленности месторождения для промышленного освоения по категориям возложено на Государственные комиссии по запасам полезных ископаемых, деятельность которых регламентируется национальными законодательствами.

Месторождения полезных ископаемых по классификации В. Линдгрена, предложенной еще в 1911 г., подразделяются на две основные группы: месторождения, образованные механическими процессами; месторождения, образованные химическими процессами. Месторождения второй группы наиболее распространены. Они одразделяются в зависимости от среды отложения на три класса, бразовавшиеся: А — в поверхностных водах, В — в горных породах и из магмы путем ее дифференциации. В класс В входят месторождения, связанные с магматической деятельностью. Они, в свою очередь, подразделяются на гидротермальные (эпи-, мезо- и гипотермальные) и эманационные (контактово-метасоматические, пирометасоматические и фумарольные Классификация В. Линдгрена, в свое время широко распро-страненная, подверглась серьезной критике советских и некоторые арубежных ученых, особенно в отношении гидротермальных ме-горождений. С. С. Смирнов указал, что классификация гидротермальных месторождений В. Линдгрена, основным принципом которой служат месторождения известного класса, определяющегося способами извлечения вещества, могут разделяться на подклассы, образующиеся в различных физико-химических условиях. Например, магматические месторождения ювенильного класса (I ) будут резко отличны от магматических месторождений сиалического класса (IV ).

Таблица 1

Генетическая классификация эндогенных месторождений.

По Я- Н. Белевцеву

Генетический тип

Генетический класс

Генетический подкласс

А. Симатический, или ювениль-ный

I . Магматические, связанныесультраосновными и основными породами

II . Эндогидрогенные, связанные сподъемомфлюидовиз подкоровых глубин

1. Сегрегационные (раннемаг матические)

2.Ликвационные

3. Позднемагматические

(гистеромагматические)

4. Гидрогенныезоныглубин-
ных разломов

5. Гидрогенныетектоно-мета-
соматические зоны

Б. Сиалический, или коровый

III .Метаморфические, связанные с региональным динамотермальным метаморфизмом

IV . Ультраметаморфические,связанные с
гранитизацией пород
земной коры

6.Метаморфизованные

7.Метаморфические

8. Магматические, связанные сгранитоидными плутонамиполигенногообразования

9.Пегматитовые

10.Плутоногидротермальные

В. Полигенный (смешанный)

V . Телетермальные

VI . Гидротермальные

Послегранитизационные

VII .Вулканогенногидро-термальные

11. Глубинно-телетермальные

12. Приповерхностные телетермальные

13. Гидротермальные тектонометасоматических зон

14. Глубинно-вулканические

15.Субвулканические

16.Вулканические

Особенно многообразны по условиям концентрации гидротемальные месторождения, которые могут образовываться с помощью ювенильных подкоровых флюидов (V ), плутоногидротермальных (IV ), метаморфогенногидротермальных (VII ) растворов или растворов смешанного происхождения.