Колебаниями называются движения или процессы, которые характеризуются опреде-ленной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро-магнитные и др. Однако различные колебательные процессы описываются одинаковы-ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Колебания называются свободными , если они совершаются только под воздействием внутренних сил, действующих между элементами системы, после того как система выведена из положения равновесия внешними силами и предоставлена самой себе. Свободные колебания всегда затухающие колебания , ибо в реальных системах неизбежны потери энергии. В идеализированном случае системы без потерь энергии свободные колебания (продолжающиеся как угодно долго) называются собственными .

Простейшим типом свободных незатухающих колебаний являются гармонические колебания - колебания, при которых колеб-лющаяся величина изменяется со временем по закону синуса (косинуса). Колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому.

Гармонические колеба-ния описываются уравнением, которое называется уравнением гармонических колебаний:

где А - амплитуда колебаний, максимальное значение колеблющейся величины х ; - круговая (циклическая) частота собственных колебаний; - начальная фаза колебания в мо-мент времени t = 0; - фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то х может принимать значения от +A до -А .

Время T , за которое система совершает одно полное колебание, называется периодом колебаний . За время Т фаза колебания получает приращение 2π , т. е.

Откуда . (14.2)

Величина , обратная периоду колебаний

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (14.2) и (14.3) получим

Единица частоты - герц (Гц): 1 Гц - частота, при кото-рой за 1с совершается одно полное колебание.

Системы, в которых могут происходить свободные колебания, называются осцилляторами . Какими же свойствами должна обладать система, чтобы в ней могли возникнуть свободные колебания? Механическая система должна иметь положение устойчивого равновесия , при выходе из которого появляется возвращающая сила, направленная к положению равновесия . Этому положению соответствуют, как известно, минимум потенциальной энергии системы. Рассмотрим несколько колебательных систем, удовлетворяющих перечисленным свойствам.

Федун В.И. Конспект лекций по физике Механические колебания и волны

Колебания и упругие волны.

Лекция 9.

8 . Гармонические колебания и их основные характеристики.

8. 1. Свободные колебания и их основные характеристтики. Представления гармонических колебаний.

Колебательным движением называется движение, обладающее той или иной степенью повторяемости во времени. Движение называется периодическим , если значения величин, изменяющихся в процессе движения. Повторяются через равные промежутки времени.

Систему, совершающую колебания, независимо от ее природы называют осциллятором .

Свободные колебания. Для тела (точки), совершающей колебания, существует положение устойчивого равновесия. Вывести тело из этого состояния можно, приложив внешнюю силу. Тело, выведенное из состояния равновесия и представленное самому себе, совершает колебания около положения равновесия. Такие колебания называются собственными или свободными . Частота , с которой система совершает такие колебания, называется собственной.

Аналитическое представление гармонических колебаний не менее известно:

где - колеблющаяся величина (смещение, скорость, ускорение, сила и т.п.), - время, - амплитуда колебания (амплитуда равна максимальному абсолютному значению отклонения колеблющейся величины от положения равновесия), - циклическая или круговая частота.

Физический смысл циклической частоты состоит в том, что она численно равна числу колебаний, совершаемых за
секунд, т.е.

где - частота колебаний, т.е. число колебаний, совершаемых за единицу времени, - период колебаний – время, за которое совершается одно полное колебание.

Величина
называется фазой колебания. Фаза колебания – функция времени, которая определяет значение колеблющейся величины в данный момент времени . Она показывает, какую часть от амплитуды составляет смещение в данный момент времени:
. Величина называется начальной фазой колебания. Она определяет значение величины в начальный момент времени
.

Наконец, в векторном представлении колебание представляется в виде вектора, длина которого пропорциональна амплитуде колебаний (см. рис.8.2). Сам вектор вращается в плоскости чертежа с угловой скоростью  вокруг оси, перпендикулярной этой плоскости и проходящей через начало вектора

8. 2. Пружинный маятник. Дифференциальное уравнение свободных колебаний.

Пружинный маятник . Примером гармонического осциллятора является пружинный маятник. Пружинный маятник – это груз массой т , закрепленный на абсолютно упругой пружине (см. рис. 8.3) и совершающий гармонические колебания под действием упругой или квазиупругой силы (силы, имеющие иную природу, чем упругие силы, но также

Такая сила называется возвращающей силой. По второму закону Ньютона для возвращающей силы имеем

получаем дифференциальное уравнение собственных колебаний

или после перехода от комплексной формы к тригонометрической

8. 3. 1. Физический маятник.

Рассмотрим вращение массивного тела (см. рис.8.4) вокруг неподвижной оси при малых отклонениях этого тела от положения равновесия. В этом случае такое тело называют физическим маятником . Уравнением движение этого тела является основное уравнение динамики вращательного движения

где - момент инерции тела, вычисленный относительно оси вращения,
- главный вектор моментов сил, - угол поворота тела,
- угловое ускорение тела.

Напомним, что является псевдовектором, который направлен вдоль оси вращения и подчиняется правилу правого винта. Поэтому на рис. 8.4 вектор направлен за плоскость рисунка.

К вращению тело приводит только момент силы тяжести
, точка приложения которой совпадает с центром инерции тела. Поэтому главный вектор моментов сил

где
- расстояние от оси вращения до центра инерции,
-масса тела

Знак «минус» в (11) означает, что векторы
и имеют противоположные направления.

При малых отклонениях физического маятника от положения равновесия можно считать, что

.

Такое приближение дает расхождение между углом (измеряемом в радианах) и его синусом при
менее чем три процента.

Рисунок 8.

Проектируя (9) на ось вращения получаем дифференциальное уравнение колебаний физического маятника

8. 3. 2. Математический маятник.

Если размеры тела много меньше расстояния от оси вращения до центра инерции, то физический маятник можно считать математическим . Здесь проверим справедливость этого утверждения сделав предельный переход для частоты колебаний, определяемой по (8.13).

По теореме Штейнера момент инерции
, - момент инерции относительно оси, проходящей через центр инерции. Если достаточно велико, то
. Следовательно,

8. 4. Скорость и ускорение тела, участвующего в гармонических колебаниях. Кинетическая, потенциальная и полная механическая энергия осциллятора.

На примере пружинного маятника найдем скорость и ускорение тела, совершающего колебательное движение. По определению скорость тела
. Следовательно, при гармонических колебаниях согласно (8.1)

Тогда по основному закону динамики возвращающая сила

Потенциальная энергия деформированной пружины

Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

Где wt - величина под знаком косинуса или синуса; w - коэффициент, физический смысл которого раскроем ниже; А - амплитуда механических гармонических колебаний.

Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Рассмотрим следующий пример. Возьмем ось Ох (рис. 64). Из точки 0 проведем окружность с радиусом R = А. Пусть точка М из положения 1 начинает двигаться по окружности с постоянной скоростью v (или с постоянной угловой скоростью w , v = wА ). Через некоторое время t радиус повернется на угол ф: ф=wt .

При таком движении по окружности точки М ее проекция на ось х М х будет совершать движение вдоль оси х, координата которой х будет равна х = А cos ф = = А cos wt . Таким образом, если материальная точка движется по окружности радиусом А, центр которой совпадает с началом координат, то проекция этой точки на ось х (и на ось у) будет совершать гармонические механические колебания.

Если известна величина wt, которая стоит под знаком косинуса, и амплитуда А, то можно определить и х в уравнении (4.1).

Величину wt, стоящую под знаком косинуса (или синуса), однозначно определяющую координату колеблющейся точки при заданной амплитуде, называют фазой колебания . Для точки М, движущейся по окружности, величина w означает ее угловую скорость. Каков физический смысл величины w для точки М х, совершающей механические гармонические колебания? Координаты колеблющейся точки М х одинаковы в некоторый момент времени t и (Т +1) (из определения периода Т), т. е. A cos wt = A cos w (t + Т), а это значит, что w (t + Т) - wt = 2ПИ (из свойства периодичности функции косинуса). Отсюда следует, что

Следовательно, для материальной точки, совершающей гармонические механические колебания, величину w можно интерпретировать как количество колебаний за определенный цикл времени, равный . Поэтому величину w назвали циклической (или круговой) частотой .

Если точка М начинает свое движение не из точки 1 а из точки 2, то уравнение (4,1) примет вид:

Величину ф 0 называют начальной фазой .

Скорость точки М х найдем как производную от координаты по времени:

Ускорение точки, колеблющейся по гармоническому закону, определим как производную от скорости:

Из формулы (4.4) видно, что скорость точки, совершающей гармонические колебания, изменяется тоже по закону косинуса. Но скорость по фазе опережает координату на ПИ/2 . Ускорение при гармоническом колебании изменяется по закону косинуса, но опережает координату по фазе на п . Уравнение (4.5) можно записать через координату х:

Ускорение при гармонических колебаниях пропорционально смещению с противоположным знаком. Умножим правую и левую части уравнения (4.5) на массу колеблющей материальной точки т, получим соотношения:

Согласно второму закону Ньютона, физический смысл правой части выражения (4.6) есть проекция силы F x , которая обеспечивает гармоническое механическое движение:

Величина F x пропорциональна смещению х и направлена противоположно ему. Примером такой силы является сила упругости, величина которой пропорциональна деформации и противоположно ей направлена (закон Гука).

Закономерность зависимости ускорения от смещения, вытекающую из уравнения (4.6), рассмотренную нами для механических гармонических колебаний, можно обобщить и применить при рассмотрении колебаний другой физической природы (например, изменение тока в колебательном контуре, изменение заряда, напряжения, индукции магнитного поля и т. д.). Поэтому уравнение (4.8) называют основным уравнением динамики гармонических колебаний .

Рассмотрим движение пружинного и математического маятников.

Пусть к пружине (рис. 63), расположенной горизонтально и закрепленной в точке 0, одним концом прикреплено тело массой т, которое может перемещаться вдоль оси х без трения. Коэффициент жесткости пружины пусть будет равен k. Выведем тело m внешней силой из положения равновесия и отпустим. Тогда вдоль оси х на тело будет действовать только упругая сила, которая согласно закону Гука, будет равна: F yпp = -kx.

Уравнение движения этого тела будет иметь вид:

Сравнивая уравнения (4.6) и (4.9), делаем два вывода:

Из формул (4.2) и (4.10) выводим формулу для периода колебаний груза на пружине:

Математическим маятником называется тело массой т, подвешенное на длинной нерастяжимой нити пренебрежимо малой массы. В положении равновесия на это тело будут действовать сила тяжести и сила упругости нити. Эти силы будут уравновешивать друг друга.

Если нить отклонить на угол а от положения равновесия, то на тело действуют те же силы, но они уже не уравновешивают друг друга, и тело начинает двигаться по дуге под действием составляющей силы тяжести, направленной вдоль касательной к дуге и равной mg sin a .

Уравнение движения маятника принимает вид:

Знак минус в правой части означает, что сила F x = mg sin a направлена против смещения. Гармоническое колебание будет происходить при малых углах отклонения, т. е. при условии а 2* sin a .

Заменим sin а в уравнении (4.12), получим следующее уравнение.

Определение гармонических колебаний. Характеристики гармонических колебаний: смещение от положения равновесия, амплитуда колебаний, фаза колебания, частота и период колебаний. Скорость и ускорение колеблющейся точки. Энергия гармонического осциллятора. Примеры гармонических осцилляторов: математический, пружинный, крутильный и физиче ский маятники.

Акустика, радиотехника, оптика и другие разделы науки и техники базируются на учении о колебаниях и волнах. Большую роль играет теория колебаний в механике, в особенности в расчетах на прочность летательных аппаратов, мостов, отдельных видов машин и узлов.

Колебания являются процессами, повторяющимися через одинаковые промежутки времени (при этом далеко не все повторяющиеся процессы являются колебаниями!). В зависимости от физической природы повторяющегося процесса различают колебания механические, электромагнитные, электромеханические и т.п. При механических колебаниях периодически изменяются положения и координаты тел.

Возвращающая сила - сила, под действием которой происходит колебательный процесс. Эта сила стремится тело или материальную точку, отклоненную от положения покоя, вернуть в исходное положение.

В зависимости от характера воздействия на колеблющееся тело различают свободные (или собственные) колебания и вынужденные колебания.

В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные, автоколебания и параметрические колебания.

    Свободными (собственными) колебаниями называются такие колебания, которые происходят в системе, предоставленной самой себе после того, как ей был сообщен толчок, либо она была выведена из положения равновесия, т.е. когда на колеблющееся тело действует только возвращающая сила.. Примером могут служить колебания шарика, подвешенного на нити. Для того, чтобы вызвать колебания, надо либо толкнуть шарик, либо, отведя в сторону, отпустить его. В том случае, если не происходит рассеивания энергии, свободные колебания являются незатухающими. Однако, реальные колебательные процессы являются затухающими, т.к. на колеблющееся тело действуют силы сопротивления движению (в основном силы трения).

    · Вынужденными называются такие колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодически изменяющейся силы (например, колебания моста, возникающие при прохождении по нему людей, шагающих в ногу). Во многих случаях системы совершают колебания, которые можно считать гармоническими.

    · Автоколебания , как и вынужденные колебания, сопровождаются воздействием на колеблющуюся систему внешних сил, однако, моменты времени, когда осуществляются эти воздействия, задаются самой колеблющейся системой. То есть система сама управляет внешним воздействием. Примером автоколебательной системы являются часы, в которых маятник получает толчки за счет энергии поднятой гири или закрученной пружины, причем эти толчки происходят в моменты прохождения маятника через среднее положение.

    · Параметрические колебания осуществляются при периодическом изменении параметров колеблющейся системы (качающийся на качелях человек периодически поднимает и опускает свой центр тяжести, тем самым меняя параметры системы). При определенных условиях система становится неустойчивой - случайно возникшее отклонение из положения равновесия приводит к возникновению и нарастанию колебаний. Это явление называется параметрическим возбуждением колебаний (т.е. колебания возбуждаются за счет изменения параметров системы), а сами колебания – параметрическими.

Несмотря на разную физическую природу, для колебаний характерны одни и те же закономерности, которые исследуются общими методами. Важной кинематической характеристикой является форма колебаний. Она определяется видом той функции времени, которая описывает изменение той или иной физической величины при колебаниях. Наиболее важными являются такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса . Они называются гармоническими .

Гармоническими колебаниями называются колебания, при которых колеблющаяся физическая величина изменяется по закону синуса (или косинуса).

Этот вид колебаний особенно важен по следующим причинам. Во-первых, колебания в природе и в технике часто имеют характер очень близких к гармоническим. Во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение, или суперпозиция,гармонических колебаний.