Экосистема (от греческого слова oikos - жилище, местопребывание) - любой природный комплекс (биокосная система). Он состоит из живых организмов (биоценоз) и среды их обитания: косной (например, атмосфера) или биокосной (почва, водоем и т. п.), связанных между собой потоками вещества, энергии и информации. Гниющий пень со всеми его многочисленными обитателями (грибами, микроорганизмами, беспозвоночными) - экосистема небольшого масштаба. Озеро с водными и околоводными организмами (в том числе птицами, питающимися водными животными, прибрежной растительностью) - тоже экосистема, но большего масштаба. Самая большая экосистема - вся биосфера в целом. В экосистеме всегда есть энергетический вход и выход. Большая часть энергии для существования экосистем поступает за счет энергии Солнца, первично улавливаемой автотрофами, основную массу которых составляют зеленые растения. По пищевым цепям эта энергия и вещество включаются в круговорот, характерный для каждой экосистемы. Первичные и вторичные гетеротрофы (травоядные и плотоядные животные) используют накопленную энергию и созданное автотрофами вещество, которое затем вновь поступает в круговорот после его разложения и минерализации гетеротрофами-сапрофитами (грибами, микроорганизмами). Выход из этого круговорота - в осадочные породы (см. Круговорот веществ в природе). Термин «экосистема» предложил в 1935 г. английский ботаник А. Тенсли. В 1944 г. советский биолог В. Н. Сукачев ввел близкое к нему понятие «биогеоценоз». Биогеоценоз, в понимании В. Н. Сукачева, отличается от экосистемы определенностью своего объема. Экосистема может охватывать пространство любой протяженности - от капли прудовой воды до биосферы. Биогеоценоз - определенный участок территории, через который не проходит ни одна существенная биоценотическая (см. Биоценоз), гидрологическая, климатическая, почвенная или геохимическая граница. Биогеоценозы - это кирпичики, из которых сложена вся биосфера. На суше границы биогеоценоза обычно выделяют по характеру растительного покрова: изменение растительности маркирует почвенные, геохимические и другие границы. Размеры биогеоценозов различны - от нескольких сотен квадратных метров до нескольких квадратных километров, а по вертикали - от нескольких сантиметров (на скальных породах) до нескольких сотен метров (в лесах). Совокупность популяций организмов, входящих в экосистему (обычно в пределах биогеоценоза), жизнь которых тесно связана с каким-то одним, центральным видом, называется консорцией (от латинского слова consortium - сообщество). Обычно в роли центрального вида консорции выступает растение, которое определяет весь характер биогеоценоза: в ельниках - ель, в сосняках - сосна, в ковыльной степи - ковыль и т. д. Связь между центральным видом и остальными в консорции может быть самая разная: через пищевые цепи, как местообитание (лишайник на стволе сосны), создание комфортных микроклиматических условий (влажность, тень под пологом дерева).

17. Экосистемы и биогеоценозы

Экосистема – это любое единство, включающее все организмы и весь комплекс физико-химических факторов и взаимодействующее с внешней средой. Экосистемы – это основные природные единицы на поверхности Земли.

Учение об экосистемах было создано английским ботаником Артуром Тенсли (1935).

Для экосистем характерен разного рода обмен веществ не только между организмами, но и между их живыми и неживыми компонентами. При изучении экосистем особое внимание уделяется функциональным связям между организмами, потокам энергии и круговороту веществ .

Пространственно-временные границы экосистем могут выделяться достаточно произвольно. Экосистема может быть идолговечной (например, биосфера Земли), и кратковременной (например, экосистемы временных водоемов). Экосистемы могут бытьестественными и искусственными . С точки зрения термодинамики, естественные экосистемы – всегда открытые системы (обмениваются с внешней средой веществом и энергией); искусственные экосистемы могут быть изолированными (обмениваются с внешней средой только энергией).

Биогеоценозы . Параллельно с учением об экосистемах развивалось и учение о биогеоценозах, созданное Владимиром Николаевичем Сукачевым (1942).

Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, растительности, животного мира и микроорганизмов, почвы, горной породы и гидрологических условий), имеющая свою особую специфику взаимодействий слагающих компонентов и определенный тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии .

Биогеоценозы характеризуются следующими чертами:

– биогеоценоз связан с определенным участком земной поверхности; в отличие от экосистемы пространственные границы биогеоценозов не могут быть проведены произвольно;

– биогеоценозы существуют длительное время;

– биогеоценоз – это биокосная система, представляющая собой единство живой и неживой природы;

– биогеоценоз – это элементарная биохорологическая ячейка биосферы (то есть биолого-пространственная единица биосферы);

– биогеоценоз – это арена первичных эволюционных преобразований (то есть эволюция популяций протекает в конкретных естественноисторических условиях, в конкретных биогеоценозах).

Таким образом, как и экосистема, биогеоценоз представляет собой единство биоценоза и его неживой среды обитания; при этом основой биогеоценоза является биоценоз. Понятия экосистемы и биогеоценоза внешне сходны, но, в действительности, они различны. Иначе говоря, любой биогеоценоз – это экосистема, но не любая экосистема – биогеоценоз .

Структура экосистемы

Поддержание жизнедеятельности организмов и круговорот веществ в экосистеме возможны только за счет постоянного притока высокоорганизованной энергии. Основным первичным источником энергии на Земле является солнечная энергия.

В экосистемах наблюдается постоянный поток энергии , которая переходит из одной формы в другую.

Фотосинтезирующие организмы переводят энергию солнечного света в энергию химических связей органических веществ. Эти организмы являются производителями, или продуцентами органического вещества. В большинстве случаев функции продуцентов в экосистемах выполняют растения.

Погибшие организмы и отходы жизнедеятельности в любой форме потребляются организмами, разрушающими мертвое органическое вещество до неорганических веществ – редуцентами , или деструкторами . К редуцентам относятся различные животные (как правило, беспозвоночные), грибы, прокариоты:

некрофаги – трупоеды;

копрофаги (копрофилы, копротрофы) – питаются экскрементами;

сапрофаги (сапрофиты, сапрофилы, сапротрофы) – питаются мертвым органическим веществом (опавшими листьями,линочными шкурками); к сапрофагам относятся:

ксилофаги (ксилофилы, ксилотрофы) – питаются древесиной;

кератинофаги (кератинофилы, кератинотрофы) – питаются роговым веществом;

детритофаги – питаются полуразложившимся органическим веществом;

окончательные минерализаторы – полностью разлагают органическое вещество.

Продуценты и редуценты обеспечивают круговорот веществ в экосистеме: окисленные формы углерода и минеральных веществ превращаются в восстановленные и наоборот; происходит превращение неорганических веществ в органические, а органических – в неорганические.

Пищевые цепи

При последовательной передаче энергии от одних организмов к другим образуются пищевые (трофические) цепи .

Трофические цепи, которые начинаются с продуцентов, называются пастбищные цепи , или цепи выедания . Отдельные звенья пищевых цепей называются трофические уровни . В пастбищных цепях выделяют следующие уровни:

1-й уровень – продуценты (растения);

2-й уровень – консументы первого порядка (фитофаги);

3-й уровень – консументы второго порядка (зоофаги);

4-й уровень – консументы третьего порядка (хищники);

Погибшие организмы и отходы жизнедеятельности каждого уровня разрушаются редуцентами. Трофические цепи, которые начинаются с редуцентов, называются детритные цепи . Детритные цепи являются основой существования зависимых экосистем, в которых органического вещества, произведенного продуцентами, недостаточно для обеспечения энергией консументов (например, глубоководные экосистемы, экосистемы пещер, экосистемы почвы). В этом случае существование экосистемы возможно за счет энергии, содержащейся в мертвом органическом веществе.

Органическое вещество, находящееся на каждом трофическом уровне, может потребляться различными организмами и различными способами. Один и тот же организм может относиться к разным трофическим уровням. Таким образом, в реальных экосистемах пищевые цепи превращаются в пищевые сети .

Ниже приведен фрагмент пищевой сети смешанного леса.

Продуктивность трофических уровней

Количество энергии, проходящее через трофический уровень на единице площади за единицу времени, называется продуктивностью трофического уровня . Продуктивность измеряется в ккал/га·год или других единицах (в тоннах сухого вещества на 1 га за год; в миллиграммах углерода на 1 кв. метр или на 1 куб. метр за сутки и т. д.).

Энергия, поступившая на трофический уровень, называется валовой первичной продуктивностью (для продуцентов) или рационом (для консументов). Часть этой энергии расходуется на поддержание процессов жизнедеятельности (метаболические затраты, илизатраты на дыхание ), часть – на образование отходов жизнедеятельности (опад у растений, экскременты, линочные шкурки и иные отходы у животных), часть – на прирост биомассы . Часть энергии, затраченная на прирост биомассы, может быть потребленаконсументами следующего трофического уровня.

Энергетический баланс трофического уровня может быть записан в виде следующих уравнений:

(1) валовая первичная продуктивность = дыхание + опад + прирост биомассы

(2) рацион = дыхание + отходы жизнедеятельности + прирост биомассы

Первое уравнение применяется по отношению к продуцентам, второе – по отношению к консументам и редуцентам.

Разность между валовой первичной продуктивностью (рационом) и затратами на дыхание называется чистой первичной продуктивностью трофического уровня. Энергия, которая может быть потреблена консументами следующего трофического уровня, называется вторичной продуктивностью рассматриваемого трофического уровня.

При переходе энергии с одного уровня на другой часть ее безвозвратно теряется: в виде теплового излучения (затраты на дыхание), в виде отходов жизнедеятельности. Поэтому количество высокоорганизованной энергии постоянно уменьшается при переходе с одного трофического уровня на последующий. В среднем на данный трофический уровень поступает ≈ 10 % энергии, поступившей на предыдущий трофический уровень; эта закономерность называется правилом «десяти процентов», или правилом экологической пирамиды . Поэтому количество трофических уровней всегда ограничено (4-5 звеньев), например, уже на четвертый уровень поступает только 1/1000 часть энергии от поступившей на первый уровень.

Динамика экосистем

В формирующихся экосистемах на образование вторичной продукции расходуется лишь часть прироста биомассы; в экосистеме происходит накопление органического вещества. Такие экосистемы закономерно сменяются другими типами экосистем. Закономерная смена экосистем на определенной территории называется сукцессия . Пример сукцессии: озеро → зарастающее озеро →болото → торфяник → лес .

Различают следующие формы сукцессий:

первичные – возникают на ранее незаселенных территориях (например, на незадернованных песках, скалах); биоценозы, первоначально формирующиеся в таких условиях, называются пионерными сообществами ;

вторичные – возникают в нарушенных местообитаниях (например, после пожаров, на вырубках);

обратимые – возможен возврат к ранее существовавшей экосистеме (например, березняк → гарь → березняк → ельник );

необратимые – возврат к ранее существовавшей экосистеме невозможен (например, уничтожение реликтовых экосистем;реликтовая экосистема – это экосистема, сохранившаяся от прошлых геологических периодов);

антропогенные – возникающие под воздействием человеческой деятельности.

Накопление органического вещества и энергии на трофических уровнях приводит к повышению устойчивости экосистемы. В ходе сукцессии в определенных почвенно-климатических условиях формируются окончательные климаксные сообщества . В климаксныхсообществах весь прирост биомассы трофического уровня расходуется на образование вторичной продукции. Такие экосистемы могут существовать бесконечно долго.

В деградирующих (зависимых) экосистемах энергетический баланс отрицательный – энергии, поступившей на низшие трофические уровни, недостаточно для функционирования высших трофических уровней. Такие экосистемы неустойчивы и могут существовать только при дополнительных затратах энергии (например, экосистемы населенных пунктов и антропогенных ландшафтов). Как правило, в деградирующих экосистемах число трофических уровней снижается до минимума, что еще больше увеличивает их неустойчивость.

Антропогенные экосистемы

К основным типам антропогенных экосистем относятся агробиоценозы и промышленные экосистемы.

Агробиоценозы – это экосистемы, созданные человеком для получения сельскохозяйственной продукции.

В результате севооборотов в агробиоценозах обычно происходит смена видового состава растений. Поэтому при описании агробиоценоза дается его характеристика на протяжении нескольких лет.

Особенности агробиоценозов:

– обедненный видовой состав продуцентов (монокультура);

– систематический вынос элементов минерального питания с урожаем и необходимость внесения удобрений;

– благоприятные условия для размножения вредителей в связи с монокультурой и необходимость применения средств защиты растений;

– необходимость уничтожения сорняков – конкурентов культурных растений;

– сокращение числа трофических уровней в связи с обедненностью видового разнообразия; упрощение цепей (сетей) питания;

– невозможность самовоспроизведения и саморегуляции.

Для поддержания устойчивости агробиоценозов необходимы дополнительные затраты энергии. Например, в экономически развитых странах для производства одной пищевой калории затрачивается 5-7 калорий энергии ископаемого топлива.

Промышленные экосистемы – это экосистемы, формирующиеся на территории промышленных предприятий . Промышленные экосистемы характеризуются следующими особенностями:

– высокий уровень загрязненности (физические, химические и биологические загрязнения);

– высокая зависимость от внешних источников энергии;

– исключительная обедненность видового разнообразия;

– неблагоприятное влияние на смежные экосистемы.

Для контроля за состоянием антропогенных экосистем используются экологические знания.

На первом этапе работы необходима комплексная инвентаризация (паспортизация) антропогенных экосистем. Полученные данные необходимо проанализировать, выявить состояние экосистемы, степень ее устойчивости. В ряде случаев необходимо поставить эксперименты, спланированные для выявления действия комплекса факторов.

На следующем этапе ведется построение комплексных моделей, объясняющих имеющееся состояние экосистемы и служащих для прогнозирования изменений. Вырабатываются и исполняются рекомендации по повышению устойчивости экосистем. Постоянно ведется корректировка управления деятельностью человека.

На заключительном этапе работы планируется и осуществляется система наблюдений за состоянием экосистемы – экологический мониторинг (от англ. monitor – подстерегающий). При осуществлении экологического мониторинга используются физико-химические измерительные методы, а также методы биотестирования и биоиндикации.

Биотестирование – это контроль за состоянием среды с помощью специально созданных тест–объектов . Тест–объектами могут служить культуры клеток, тканей, целостные организмы. Например, выведен специальный сорт табака, на листьях которого при повышенном содержании озона образуются некротические пятна.

Биоиндикация – это контроль за состоянием среды с помощью обитающих в ней организмов. В этом случае в качестве тест–объектов используется видовой состав фитопланктона, спектр морфологических типов лишайников. Например, видовой состав травянистых растений может служить для индикации эрозии почв. На почвах, не затронутых эрозией, или слабосмытых почвах произрастают: костер безостый, клевер луговой. На смытых почвах произрастают: ястребинка волосистая, мать-и-мачеха.

Для обнаружения тяжелых металлов используется физико-химический анализ тканей организмов, избирательно накапливающих различные металлы. Например, подорожник избирательно накапливает свинец и кадмий, а капуста избирательно накапливает ртуть.

20. экология как научная основа рационального природопользования и охраны природы ЭКОЛОГИЯ (от греч. "oikos" - дом, жилище, местопребывание и...логия), - наука об отношениях живых организмов и образуемых ими сообществ между собой и с окружающей средой. Термин "экология" предложен в 1866 Э. Геккелем. Объектами экологии могут быть популяции организмов, виды, сообщества,экосистемыибиосферав целом. С середине XX в. в связи с усилившимсянегативным воздействием человека на природу экология приобрела особое значенние как научная основа рационального природопользования и охраны живых организмов, а сам термин "экология" - более широкий смысл. Предметом исследования экологии являются биологические макросистемы (популяции,биоценозы,экосистемы) и их динамика во времени и пространстве. Из содержания и предмета исследований экологии вытекают и её основные задачи, которые могут быть сведены к изучению динамики популяций, к учению обиогеоценозахи их системах. Структура биоценозов, на уровне формирования которых происходит освоение среды, способствует наиболее экономичному и полному использованию жизненных ресурсов. Поэтому главная теоретическая и практическая задача экологии заключается в том, чтобы вскрыть законы этих процессов и научиться управлять ими в условиях неизбежной индустриализации и урбанизациипланеты. Но, согласно исследованиямЛ. К. Яхонтовойи В. П. Зверева, "...указанным аспектом экологии нельзя ограничиться, поскольку понятие среды обитания подразумевает сложную природно-техническую систему, отнюдь не только биологическую, но не в меньшей степени также геолого-минеральную и технолого-минеральную, связанную с результатами технологической деятельности общества. Защита среды обитания от последствий деятельности человека приобретает первостепенное значение, а изучение техногенного минералообразования имеет особое значение в решении задач охраны окружающей среды на территориях горно-промышленных комплексов. Техногенная минерализация является бесспорным индикатором многих процессов, наносящих ущерб не только окружающей среде (повышенная концентрация токсичных веществ в водах, засоленность грунтов, присутствие в строениях и конструкциях минерализованных растворов, интенсивная коррозия металлов и пр.), но и здоровью людей, живущих в рудных районах" (Яхонтова Л. К., Зверева В. П., 2000). С 70-х гг. XX в. складывается экология человека, или социальная экология, изучающая закономерности взаимодействия общества и окружающей среды, а также практические проблемы ее охраны; включает различные философские, социологические, экономические,географические,геологическиеи другие аспекты (напр., - экология города, техническая экология, экологическая этика, экология проведения геологоразведочных и горнодобывающих работ и др.). В этом смысле говорят об "экологизации" современной науки. Экологическое направление стало углубленно развиваться и в геологии (эклогическая геология).

Главная теоретическая и практическая задача экологии - раскрыть общие закономерности организации жизни и на этой основе разработать принципы рационального использования природных ресурсов в условиях все возрастающего влияния человека на биосферу. Экологическая ситуация в современном мире становится всё более далека от благополучной, что связано с непомерной жаждой потребления "цивилизованного" человека. Взаимодействие человеческого общества и Природы стало одной из важнейших проблем современности, поскольку положение, которое складывается в отношениях человека с природой, часто становится критическим: исчерпываются запасы пресной воды и полезных ископаемых (нефти, газа, цветных металлов и др.), ухудшается состояние почв, водного и воздушного бассейнов, происходит опустыниваниеогромных территорий, усложняется борьба с болезнями и вредителями сельскохозяйственных культур. Антропогенные изменения затронули практически всеэкосистемыпланеты, газовый состав атмосферы, энергетический балансЗемли. Это означает, что деятельность человека вступила в противоречие с Природой, в результате чего во многих районах мира нарушилось ее динамическое равновесие. Для решения этих глобальных проблем и прежде всего проблемы интенсификации и рационального использования, сохранения и воспроизводства ресурсов биосферы экология объединяет в научном поиске усилия биологов и микробиологов,геологови географов, придает эволюционному учению, генетике, биохимии и геохимии их истинную универсальность. В круг проблем экологии включены также вопросы экологического воспитания и просвещения, морально-этические, философские и даже правовые вопросы. Следовательно, экология становится из науки первоначально биологической - наукой комплексной и социальной. Экологическая ситуация в современном мире становится всё более далека от благополучной, что связано с непомерной жаждой потребления "цивилизованного" человека. Экологические проблемы, порожденные современным общественным развитием, вызвали к жизни ряд общественно-политических движений ("Зеленые", "Гринпис", "Всеевропейская экологическая сеть" и мн. др.), выступающих против загрязнения окружающей среды и за сохранение или восстановление жизнеспособных природных экосистем. За борьбу с негативными последствиями научно-технического "прогресса", ставшими в своей совокупности одной из главных глобальных угроз человечеству и жизни на Земле.

Термин «биогеоценоз» часто применяется и в экологии, и в биологии. Это совокупность объектов биологического и небиологического происхождения, ограниченная определенной территорией и характеризующаяся взаимным обменом веществ и энергии.

Быстрая навигация по статье

Определение

Когда вспоминают, какой ученый ввел в науку понятие о биогеоценозах, речь заходит о советском академике В. Н. Сукачеве. Термин биогеоценоз был предложен им в 1940 году. Автор учения о биогеоценозе не только предложил термин, но и создал стройную и развернутую теорию об этих сообществах.

В западной науке определение «биогеоценоз» не слишком распространено. Там популярнее учение об экосистемах. Иногда биоценозом называют экосистемы, но это неправильно.

Между понятиями «биогеоценоз» и «экосистема» есть отличия. Экосистема – это более широкое понятие. Она может быть ограничена каплей воды, а может распространяться на тысячи гектаров. Границы биогеоценоза являются обычно ареалом единого растительного комплекса. Примером биогеоценоза может быть лиственный лес или пруд.

Свойства

Основные компоненты биогеоценоза неорганического происхождения – это воздух, вода, минералы и прочие элементы. Среди живых организмов встречаются растения, животные и микроорганизмы. Некоторые обитают в наземном мире, другие под землей или под водой. Правда, с точки зрения функций, выполняемых ими, характеристика биогеоценоза выглядит иначе. В состав биогеоценоза входят:

  • продуценты;
  • консументы;
  • редуценты.

Эти основные компоненты биогеоценоза участвуют в обменных процессах. Присутствует тесная связь между ними.

Роль производителей органических веществ в биогеоценозах играют продуценты. Они преобразуют солнечную энергию и минералы в органику, которая выполняет функцию строительного материала для них. Основным процессом, организующим биогеоценоз, является фотосинтез. Речь идет о растениях, которые превращают солнечную энергию и питательные вещества почвы в органику.

После смерти даже грозный хищник становится добычей грибков и бактерий, разлагающих тело, превращая органические вещества в неорганику. Этих участников процесса называют редуцентами. Таким образом, замыкается круг, состоящий из взаимосвязанных видов растений и животных.

Кратко схема биогеоценоза выглядит так. Растения потребляют энергию Солнца. Это основные производители глюкозы в биогеоценозе. Животные и другие консументы передают и преобразовывают энергию и органические вещества. В биогеоценоз входят также бактерии, минерализующие органику и помогающие растениям усваивать азот. Каждый химический элемент, присутствующий на планете, вся таблица Менделеева участвует в этом круговороте. Биогеоценоз характеризуется сложной, саморегулирующейся структурой. И каждый, кто участвует в его процессах, важен и необходим.

Механизм саморегуляции, что называют еще динамическим равновесием, объясним на примере. Допустим, благоприятные погодные условия привели к увеличению количества растительной пищи. Это в значительной степени вызвало рост популяции травоядных животных. Хищники начали активно охотиться на них, сокращая количество травоядных, но увеличивая свою популяцию. На всех пищи не хватает, поэтому часть хищников вымерла. В результате система снова вернулась в состояние равновесия.

Вот какие признаки говорят об устойчивости биогеоценозов:

  1. большое количество видов живых организмов;
  2. участие их в синтезе неорганических веществ;
  3. широкое жизненное пространство;
  4. отсутствие негативного антропогенного воздействия;
  5. большой диапазон типов межвидового взаимодействия.

Виды

Естественный биогеоценоз имеет природное происхождение. Примерами искусственных биогеоценозов являются городские парки или агробиоценозы. Во втором случае основным процессом, организующим биогеоценоз, является сельскохозяйственная деятельность человека. Состояние системы обусловлено рядом антропогенных характеристик.

Основные свойства биогеоценозов, созданных человеком в аграрном секторе, зависят от того, чем засеяно поле, насколько успешна борьба с сорняками и вредителями, какие удобрения и в каком количестве внесены, как часто производится полив.

Если вдруг обработанные посевы будут заброшены, без человеческого участия они погибнут, а сорняки и вредители начнут активно размножаться. Тогда свойства биогеоценоза станут другими.

Искусственный биогеоценоз, созданный человеком, не способен к саморегуляции. Устойчивость биогеоценоза зависит от человека. Его существование возможно только при активном человеческом вмешательстве. Абиотический компонент биогеоценоза нередко тоже входит в его состав. Примером может служить аквариум. В этом небольшом искусственном водоеме живут и развиваются различные организмы, каждый из которых входит в биогеоценоз.

Большинство естественных природных сообществ формируется длительное время, иногда сотни и тысячи лет. Участники долго «притираются» друг к другу. Такие биогеоценозы характеризуются высокой устойчивостью. Равновесие держится на взаимосвязи популяций. Устойчивость биогеоценоза определяется отношениями между участниками процесса и носит стабильный характер. Если не происходит значительных природных и техногенных катастроф, сопряженных с разрушениями, грубого вмешательства человека, биогеоценоз, как правило, постоянно находится в состоянии динамического равновесия.

Каждый вид взаимоотношений – важный лимитирующий фактор в поддержании равновесия в системе.

Примеры

Рассмотрим, что такое биогеоценоз, в качестве примера взяв луг. Так как первичным звеном в пищевых сетях биогеоценозов являются продуценты, эту роль здесь играют луговые травы. Исходным источником энергии в биогеоценозе луга является энергия Солнца. Травы и кустарники, эти основные производители глюкозы в биогеоценозе, растут, служат пищей для зверей, птиц и насекомых, которые, в свою очередь, становятся добычей хищников. Мертвые останки попадают в почву и перерабатываются микроорганизмами.

Особенностью фитоценоза (растительного мира) лиственных лесов, в отличие от луга или степи, является наличие нескольких ярусов. У обитателей верхних ярусов, куда входят более высокие деревья, есть возможность потреблять больше солнечной энергии, чем у нижних, которые способны существовать в тени. Затем идет ярус кустарников, потом – травы, затем, под слоем сухих листьев и у древесных стволов растут грибы.

В биогеоценозе большое разнообразие видов растений и других живых организмов. Зоны обитания животных тоже разделены на несколько ярусов. Одни обитают на верхушках деревьев, а другие находятся под землей.

Такой биогеоценоз как пруд характеризуется тем, что средой обитания является вода, дно водоема и надводная поверхность. Тут растительный мир представлен водорослями. Часть из них плавает на поверхности, а часть постоянно скрыта под водой. Ими питаются рыбы, насекомые, ракообразные. Хищная рыба и насекомые легко находят себе добычу, а бактерии и другие микроорганизмы обитают на дне водоема и в толще воды.

Несмотря на относительную устойчивость естественных биогеоценозов, со временем свойства биогеоценоза меняются, превращаясь из одних в другие. Иногда биологическая система реорганизуется быстро, как в случае зарастания мелких водоемов. Они способны за короткое время превратиться в болота или луга.

Формирование биогеоценоза может длиться столетиями. Например, каменистые, почти голые скалы постепенно покрываются мхами, затем появляется другая растительность, разрушая скальную породу и меняя ландшафт и фауну. Свойства биогеоценоза меняются медленно, но неуклонно. Только люди способны резко ускорить эти изменения и не всегда в лучшую сторону.

Человек должен бережно относиться к природе, сохранять ее богатства, не допускать загрязнения окружающей среды и варварского отношения к ее обитателям. Он не должен забывать, что это его дом, где придется жить потомкам. И только от него зависит, в каком состоянии он им достанется. Поймите это сами и объясните другим.

Биоценология

Биоценология (от биоценоз и греч. logos - учение, наука) - это

1) Биологическая дисциплина, изучающая растительные и животные сообщества в их совокупности (живую природу), то есть биоценозы, их строение, развитие, распределение в пространстве и во времени, происхождение. Изучение сообществ организмов в их взаимодействии с неживой природой - предмет биогеоценологии.

2) Центральный раздел экологии, изучающий закономерности жизни организмов в биоценозах, их популяционную структуру, потоки энергии и круговорот веществ. Близок к понятию синэкология.

3) Наука о биологических сообществах или биоценозах, их составе, структуре, внутренней, или биоценотической среде, совершающихся в сообществах биотрофических и медиопативных процессах, механизмах регуляции и развития (биоценогенеза), продуктивности, использовании и охране сообществ.

Экосистема А. Тенсли и биогеоценоз В. Н. Сукачева

Определения экосистемы:

· Любое единство, включающее все организмы на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создаёт чётко определённую трофическую структуру, видовое разнообразие и круговорот веществ (обмен веществами и энергией между биотической и абиотической частями) внутри системы (Ю. Одум, 1971).

· Система физико-химико-биологических процессов (А. Тенсли, 1935 год).

· Сообщество живых организмов вместе с неживой частью среды, в которой оно находится, и всеми разнообразными взаимодействиями (Д. Ф. Оуэн.).

· Любая совокупность организмов и неорганических компонентов окружающей их среды, в которой может осуществляться круговорот веществ (В. В. Денисов.).

Понятие “экосистема” введено английским ботаником А. Тенсли (1935), который обозначил этим термином любую совокупность совместно обитающих организмов и окружающую их среду.

По современным представлениям, экосистема как основная структурная единица биосферы - это взаимосвязанная единая функциональная совокупность живых организмов и среды их обитания, или уравновешенное сообщество живых организмов и окружающей неживой среды. В этом определении подчеркнуто наличие взаимоотношений, взаимозависимости, причинно-следственных связей между биологическим сообществом и абиотической средой, объединение их в функциональное целое. Биологи считают, что экосистема - совокупность всех популяций разных видов, проживающих на общей территории, вместе с окружающей их неживой средой.

Масштабы экосистем различны: микросистемы (например, болотная кочка, дерево, покрытый мхом камень или пень, горшок с цветком и т.п.), мезоэкосистемы (озеро, болото, песчаная дюна, лес, луг и т.п.), макроэкосистемы (континент, океан и т.п.). Следовательно, существует своеобразная иерархия макро-, мезо- и микросистем разных порядков.

Биосфера - экосистема высшего ранга, включающая, как уже было отмечено, тропосферу, гидросферу и верхнюю часть литосферы в пределах “поля” существования жизни. Она имеет громаднейшее разнообразие сообществ, в структуре которых обнаруживаются сложные сочетания растений, животных и микроорганизмов с разными способами жизни. В этой мозаике прежде всего выделяются экосистемы наземные и водные. Согласно сформулированному В.В. Докучаевым (1896) закону географической зональности на земной поверхности закономерно распространены различные природные сообщества, которые в комплексе и образуют единую экосистему нашей планеты. В пределах обширных территорий, или зон, природные условия сохраняют общие черты, изменяясь от зоны к зоне. Климат, растительность и животные распределяются на земной поверхности в строго определенном порядке. А раз агенты-почвообразователи, в своем распространении подчиненные известным законам, распределяются по поясам, то результат их деятельности - почва - должен распределяться по земному шару в виде определенных зон, идущих более или менее параллельно широтным кругам. Отчетливо видна смена Арктики и Субарктики тундрой, тундры -лесотундрой, таежно-лесной зоны - лесостепью и степью, а далее и полупустынными пространствами на территории России. Заметна и смена равнинных экосистем горными (Кавказ, Урал, Алтай и др.). Во всех этих макроэкосистемах разного порядка следует рассматривать лишь сходные типы сообществ, формирующихся в сходных климатических условиях среды различных частей планеты, а не видовой состав и популяции макроэкосистем. Кроме того, выражена дифференциация экосистем в зависимости от локальных условий (геологических факторов, рельефа, почвообразующих пород, почв и т.д.), где уже можно рассматривать и оценивать популяции разных видов, видовой состав экологических систем. Все это многообразие экосистем биосферы, особенно планетарных (суша и океан), а также провинциальных и зональных, необходимо изучать, сопоставляя их продуктивность.

Для наземных экосистем установлена следующая иерархия: биосфера - экосистема суши - климатический пояс - биоклиматическая область - природная ландшафтная зона - природный (ландшафтный) округ- природный (ландшафтный) район - природный (ландшафтный) подрайон - биогеоценотический комплекс - экосистема.

Экосистемы, измененные деятельностью человека, называют агроэкосистемами (полезащитные лесные полосы, поля, занятые сельскохозяйственными культурами, сады, огороды, виноградники и др.). Их основой являются культурные фитоценозы - многолетние и однолетние травы, зерновые и другие сельскохозяйственные культуры. Они получают дополнительную энергию в виде обработки почвы, внесения удобрений, поливных вод, пестицидов и от других мелиорации, что существенно преобразует почвы, изменяет видовой состав, структуру флоры и фауны. В результате взамен устойчивых экосистем формируются менее устойчивые. Дотации энергии новым агроэкосистемам, возможности мелиорации природных экосистем должны основываться на нормах соотношения пашни, лугов, леса и вод в соответствии с почвенно-климатическими и хозяйственными условиями, а также на законах, правилах и принципах экологии.

Биогеоценоз (В. Н. Сукачёв, 1944) - взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергии.

В.Н. Сукачевым (1972) в качестве структурной единицы биосферы предложен биогеоценоз. Биогеоценозы - природные образования с четкими границами, состоящие из совокупности живых существ (биоценозов), занимающих определенное место. Для водных организмов - это вода, для организмов суши - почва и атмосфера.

Понятия “биогеоценоз” и “экосистема” до некоторой степени однозначны, но они не всегда совпадают по объему. Экосистема - широкое понятие, экосистема не связана с ограниченным участком земной поверхности. Это понятие применимо ко всем стабильным системам живых и неживых компонентов, где происходит внешний и внутренний круговорот веществ и энергии. Так, к экосистемам относятся капля воды с микроорганизмами, аквариум, горшок с цветами, аэротенк, биофильтр, космический корабль. Биогеоценозами же они не могут быть. Экосистема может включать и несколько биогеоценозов (например, биогеоценозы округа, провинции, зоны, почвенно-климатической области, пояса, материка, океана и биосферы в целом). Таким образом, не каждую экосистему можно считать биогеоценозом, тогда как всякий биогеоценоз является экологической системой.

Понятие Биогеоценоз введено В. Н. Сукачевым (1940), что явилось логическим развитием идей русских учёных В. В. Докучаева, Г. Ф. Морозова, Г. Н. Высоцкого и др. о связях живых и косных тел природы и идей В. И. Вернадского о планетарной роли живых организмов. Биогеоценоз в понимании В. Н. Сукачева близко к экосистеме в толковании английского фитоценолога А. Тенсли, но отличается определённостью своего объёма. Биогеоценоз - элементарная ячейка биогеосферы, понимаемая в границах конкретных растительных сообществ, тогда как экосистема - понятие безразмерное и может охватывать пространство любой протяжённости - от капли прудовой воды до биосферы в целом.

Экологическая сукцессия (Ф. Клементс)

Сукцессия (от лат. succesio - преемственность, наследование) - последовательная необратимая и закономерная смена одного биоценоза (фитоценоза, микробного сообщества, биогеоценоза и т. д.) другим на определённом участке среды во времени.

Теорию сукцессий изначально разрабатывали геоботаники, но затем стали широко использовать и другие экологи. Одним из первых теорию сукцессий разработал Ф. Клементс и развил В. Н. Сукачёв, а затем С. М. Разумовский.

Термин введён Ф. Клементсом для обозначения сменяющих друг друга во времени сообществ, образующих сукцессионный ряд (серию) где каждая предыдущая стадия (серийное сообщество) формирует условия для развития последующего. Если при этом не происходит вызывающих новую сукцессию событий, то ряд завершается относительно устойчивым сообществом, имеющим сбалансированный при данных факторах среды обмен. Такое сообщество Ф. Клементс назвал климакс. Единственным признаком климакса в смысле Клементса-Разумовского является отсутствие у него внутренних причин для изменения. Время существования сообщества ни в коем случае не может являться одним из признаков.

Хотя термины, введённые Клементсом широко используют, существует две принципиально различные парадигмы, в рамках которых смысл этих терминов различен: континуализм и структурализм. Сторонники структурализма развивают теорию Клементса, сторонники континуализма, в принципе отвергают реальность сообществ и сукцессий, считая их стохастическими явлениями и процессами (поликлимакс, климакс-континуум). Процессы, происходящие в экосистеме в этом случае упрощают до взаимодействия видов, встретившихся случайным образом, и абиотический средой. Парадигма континуализма была впервые сформулирована советским геоботаником Л. Г. Раменским (1884-1953) и независимо от него американским геоботаником Г. Глизоном (1882-1975).

Сообщества организмов связаны с неорганической средой теснейшими материально-энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода. В любом конкретном местообитании запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков. Таким образом, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Понятие об экосистемах. Любую совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ, называют экосистемой. Термин был предложен в 1935 г. английским экологом А. Тенсли, который подчеркивал, что при таком подходе неорганические и органические факторы выступают как равноправные компоненты и мы не можем отделить организмы от конкретной окружающей их среды. А. Тенсли рассматривал экосистемы как основные единицы природы на поверхности Земли, хотя они и не имеют определенного объема и могут охватывать пространство любой протяженности.

Для поддержания круговорота веществ в системе необходимо наличие запаса неорганических молекул в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений. Консументы – это гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы. Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов, в течение жизни выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена – консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе чрезвычайно различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т. е. многократность вовлечения одних и тех же атомов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, степи на плакорных участках, озера и т. п.). Однако ни одна, даже самая крупная, экосистема Земли не имеет полностью замкнутого круговорота. Материки интенсивно обмениваются веществом с океанами, причем большую роль в этих процессах играет атмосфера, и вся наша планета часть материи получает из космического пространства, а часть отдает в космос.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Эко-системная организация жизни является одним из необходимых условий ее существования. Запасы биогенных элементов, из которых строят тела живые организмы, на Земле в целом и на каждом конкретном участке на ее поверхности небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни. Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Таким образом, функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы – древнейшее свойство жизни.

Учение о биогеоценозах. Параллельно с развитием концепции экосистем успешно развивается учение о биогеоценозах, автором которого был академик В. Н. Сукачев (1942).

«Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющих свою специфику взаимодействия этих слагаемых ее компонентов и определенный тип обмена веществами и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии» (В. Н. Сукачев, 1964).

«Экосистема» и «биогеоценоз» – близкие по сути понятия, но если первое из них приложимо для обозначения систем, обеспечивающих круговорот любого ранга, то «биогеоценоз» – понятие территориальное, относимое к таким участкам суши, которые заняты определенными единицами растительного покрова – фитоценозами. Наука о биогеоценозах – биогеоценология – выросла из геоботаники и направлена на изучение функционирования экосистем в конкретных условиях ландшафта в зависимости от свойств почвы, рельефа, характера окружения биогеоценоза и составляющих его первичных компонентов – горной породы, животных, растений, микроорганизмов.

В биогеоценозе В. Н. Сукачев выделял два блока: экотоп – совокупность условий абиотической среды и биоценоз – совокупность всех живых организмов.

Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп – как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов. Во внутреннем сложении биогеоценоза выделяют такие структурно-функциональные единицы, как парцеллы (термин предложен Н. В.Дылисом). Биогеоценотические парцеллы включают в себя растения, животное население, микроорганизмы, мертвую органику, почву и атмосферу по всей вертикальной толще биогеоценоза, создавая его внутреннюю мозаику. Биогеоценотические парцеллы различаются визуально по растительности: высоте и сомкнутости ярусов, видовому составу, жизненному состоянию и возрастному спектру популяций доминирующих видов. Иногда они хорошо отграничены по составу, строению и мощности лесной подстилки. Названия им дают обычно по растениям, доминирующим в разных ярусах. Например, в волосистоосоковом дубо-ельнике можно выделить такие парцеллы, как елово-волосистоосоковая, елово-кисличная, крупнопапоротниковая в окнах древесного яруса, дубово-снытевая, дубово-осиново-медуничная, березово-елово-мертвопокровная, осиново-снытевая и др.

Внутри каждой парцеллы создается свой фитоклимат. Весной в тенистых еловых парцеллах снег лежит дольше, чем на участках под листопадными деревьями или в окнах. Поэтому активная жизнь весной в парцеллах наступает в разные сроки, переработка детрита также идет с разной скоростью. Границы между парцеллами могут быть как относительно четкими, так и размытыми. Взаимосвязь осуществляется как в результате кондиционирования условий среды (теплообмен, изменение освещения, перераспределение осадков и т. п.), так и в результате материально-энергетического обмена. Происходит разброс растительного опада, перенос пыльцы, спор, семян и плодов воздушными потоками и животными, перемещение животных, поверхностный сток осадков и талых вод, передвигающих минеральные и органические вещества. Все это поддерживает биогеоценоз как единую, внутренне разнородную экосистему.

Роль разных парцелл в строении и функционировании биогеоценозов неодинакова, наиболее крупные парцеллы, занимающие большие пространства и объем, называют основными. Их бывает немного. Именно они определяют внешний облик и строй биогеоценоза. Парцеллы, занимающие небольшие площади, называют дополняющими. Число их всегда больше. Одни парцеллы более устойчивы, другие подвержены значительным и быстрым изменениям. По мере взросления и старения растений парцеллы могут сильно изменить состав и структуру, ритмы сезонного развития, по-разному участвовать в круговороте веществ.

Рис. 145. Окна возобновления основных пород в лесном биогеоценозе (по О. В. Смирновой, 1998)

Мозаичность лесных биогеоценозов и появление новых парцелл часто связаны с образованием в лесах окон, т. е. нарушением древесного яруса в связи с вывалом старых деревьев, вспышек массовых вредителей – насекомых, поражением грибами, деятельностью крупных копытных. Создание такой мозаичности совершенно необходимо для устойчивого существования леса и возобновления главенствующих пород деревьев, подрост которых часто не может развиваться под материнскими кронами, так как требует иных условий освещения и минерального питания. Окна возобновления для разных пород должны иметь достаточную пространственную протяженность (рис. 145). В восточноевропейских широколиственных лесах ни один вид не может переходить к плодоношению в окнах, соизмеримых всего с проекциями крон одного-двух взрослых деревьев. Даже наиболее теневыносливым из них – букам, кленам – требуются освещенные парцеллы в 400–600 м 2 , а полный онтогенез светолюбивых видов – дуба, ясеня, осины может завершаться только в крупных окнах не менее 1500–2000 м 2 .

На основании детального изучения структуры и функционирования биогеоценозов в экологии в последнее время развивается концепция мозаично-циклической организации экосистем. С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Биогеоценология рассматривает поверхность Земли как сеть соседствующих биогеоценозов, связанных между собой через миграцию веществ, но тем не менее, хотя и в разной степени, автономных и специфичных по своим круговоротам. Конкретные свойства участка, занятого биогеоценозом, придают ему своеобразие, выделяя из других, исходных по типу.

Обе концепции – экосистем и биогеоценозов – дополняют и обогащают друг друга, позволяя рассматривать функциональные связи сообществ и окружающей их неорганической среды в разных аспектах и с разных точек зрения.

Идея о взаимосвязи и единстве всех явлений природы привела к формированию экосистемного подхода и разработке понятия «экосистема» за рубежом и к возникновению новой научной дисциплины в бывшем СССР.

Такой дисциплиной, зародившейся в недрах лесной геоботаники и оформившейся впоследствии в фундаментальную науку со своими задачами и методами, является биогеоценология (от греч. bios — жизнь, geo — земля, koinos — общий). Основоположником биогеоценологии стал выдающийся отечественный геоботаник, лесовод и эколог, академик В.Н. Сукачев, предложивший собственную трактовку структурной организации биосферы. В.Н. Сукачев посвятил свою жизнь разработке общих вопросов фитоценологии — науки о растительных сообществах (фитоценозах). Он придавал большое значение изучению межвидовых и внутривидовых взаимоотношений растений в растительных сообществах.

Важнейшей теоретической разработкой В.Н. Сукачева является идея единства и взаимосвязи живых организмов (биоценоза) и среды его обитания (биотопа). Биогеопенология предполагает разносторонний комплексный подход к исследованию живого покрова Земли, основанный на изучении взаимодействия слагающих его компонентов. Задача биогеоценологии — расшифровка связей и взаимодействий между живыми и косными компонентами природы — биогеоценозами, которые ученый назвал элементарными ячейками поверхности Земли.

По определению В.Н. Сукачева, биогеоценоз — это однородный участок земной поверхности, где природные явления (атмосфера, горная порода, растительность, животный мир, микроорганизмы, почва, гидрологические условия) имеют однотипный характер взаимодействия между собой и объединены обменом веществ и энергии в единый природный комплекс.

Сущность биогеоценоза В.Н. Сукачев видел в процессе взаимного обмена веществом и энергией между составляющими его компонентами, а также между ними и окружающей средой. Важная особенность биогеоценоза — то, что он связан с определенным участком земной поверхности.

Исходным понятием при определении биогеоценоза был геоботанический термин «фитоценоз» - растительное сообщество, группировка растений с однородным характером взаимоотношений между ними самими и между ними и средой. Еще одним природным компонентом, с которым непосредственно контактируют растения, является атмосфера. Для характеристики биогеоценоза важны также условия увлажнения. Кроме того, любой фитоценоз всегда населен разнообразными животными.

Объедив все указанные составляющие в одно целое, мы получим структуру биогеоценоза (рис. 10). Она включает фитоценоз — растительное сообщество (автотрофные организмы, продуценты); зооценоз — животное население (гетеротрофы, консументы) и микробоценоз — различные микроорганизмы (бактерии, грибы, простейшие (редуценты). Живую часть биогеоценоза Сукачев относил к биоценозу. Неживую, абиотическую часть биогеоценоза слагают совокупность климатических факторов данной территории — климатом, биокосное образование — эдафотоп (почва) и условия увлажнения (гидрологические факторы) — гидротоп. Совокупность абиотических компонентов биогеоценоза носит название биотоп. Каждый компонент в природе неотделим от другого. Главным созидателем живого вещества в пределах биогеоценоза является фитоценоз — зеленые растения. Используя солнечную энергию, зеленые растения создают огромную массу органического вещества. Состав и масса такого вещества зависят главным образом от особенностей атмосферы и почвенных условий, которые определяются, с одной стороны, географическим положением (зональность, обусловленная существованием определенных типов биомов), а с другой — рельефом местности и расположением фитоценоза. От состава и характеристики растительности зависит существование комплекса гетеротрофов. В свою очередь, биоценоз в целом определяет состав и количество органического вещества, попадающего в почву (степные богатые черноземы, слабогумусированная почва бореальных лесов и крайне бедные почвы влажного тропического леса). Животные в процессе жизнедеятельности также оказывают разнообразное влияние на растительность. Исключительно важны взаимодействия между микроорганизмами и растительностью, микроорганизмами и позвоночными и беспозвоночными животными.

Рис. 10. Структура биогеоценоза и схема взаимодействия его компонентов

Биогеоценоз и экосистемы

Биогеоценоз как структурная единица биосферы сходен с предложенной А. Тенсли трактовкой экосистемы. Биогеоценоз и экосистема — понятия сходные, но не одинаковые. Биогеоценоз следует рассматривать как элементарную комплексную, т.е. состоящую из биотопа и биоценоза, экосистему. Каждый биогеоценоз является экосистемой, но не каждая экосистема соответствует биогеоценозу.

Прежде всего, любой биогеоценоз выделяется только на суше. Биогеоценоз имеет конкретные границы, которые определяются границами растительного сообщества — фитоценоза. Образно говоря, биогеоценоз существует только в рамках фитоценоза. Там, где нет фитоценоза, нет и биогеоценоза. Понятия «экосистема» и «биогеоценоз» тождественны только для таких природных образований, как, к примеру, лес, луг, болото, поле. Для природных образований, меньших или больших по объему, нежели фитоценоз, либо в тех случаях, где фитоценоз выделить нельзя, применяется понятие «экосистема». Например, кочка на болоте, ручей — экосистемы, но не биогеоценозы. Только экосистемами являются морс, тундра, влажный тропический лес и т.п. В тундре, лесу можно выделить не один фитоценоз, а совокупность фитоценозов, представляющих собой более крупное образование, нежели биогеоценоз.

Экосистема может быть и меньше, и крупнее биогеоценоза. Экосистема — образование более общее, безранговое. Это может быть участок суши или водоема, прибрежная дюна или небольшой пруд. Это также вся биосфера в целом. Биогеоценоз заключен в границы фитоценоза и обозначает конкретный природный объект, занимающий определенное пространство на суше и отделенный пространственными границами от таких же объектов. Это реальная природная зона, в которой осуществляется биогенный круговорот.