Со времен запуска первого Искусственного Спутника Земли (ИСЗ) в 1957 году жизнь человечества сильно изменилась. Многим достижениям технического прогресса (международная спутниковая связь, точный прогноз погоды, интернет) человечество обязано именно спутникам, летающим по орбитам в околоземном пространстве. Сегодня таких спутников, выполняющих совершенно разные задачи, десятки тысяч. Их размеры: от огромных (около 100 метров) до совсем маленьких (буквально в несколько сантиметров). У каждого из них своя задача и своя орбита. По каким орбитам летают спутники? Какие бывают орбиты и что это вообще такое?

Немного истории

Люди давно заметили, что огромные космические тела, будь то кометы, планеты или звезды, движутся по небу, сохраняя некую периодичность. Особенно любознательные записывали свои наблюдения, что давало каждому новому поколению все больше и больше знаний о движении в космическом пространстве.

Так, например, исследуя труды датского астронома Тихо Браге, Иоганн Кеплер, немецкий астроном XVI века, установил, что все космические тела движутся по определенным законам. В частности Кеплер предположил, что Марс (именно за это планетой долгое время наблюдал Браге) движется вокруг Солнца вовсе не по кругу. В своем труде «Новая астрономия, изложенная в исследованиях о движении звезды Марс» Кеплер показал, что Марс вращается вокруг Солнца по эллипсу. Позднее Кеплер сформулировал еще несколько выводов, которые объединил в три определения. Сегодня эти определения (теперь мы называем их Законами) известны нам под его именем.

Не будем углубляться в историю во всех подробностях. Лучше давайте рассмотрим, чего добилось и какие выводы сделало человечество, используя законы Кеплера. Начнем с определения орбиты.

Что такое орбита спутника

Орбитой спутника, собственно, называется траектория его движения. Движение по орбите происходит по инерции (с выключенными двигателями), и при этом на спутник (это может быть искусственный спутник или планета) оказывает влияние только гравитация (в основном, конечно, Земля). Орбиты спутников имеют эллиптическую форму и движутся по воображаемой плоскости, проходящей через центр Земли. Плоскость эта, а значит и орбита, не симметричная, а как бы вытянутая, то есть не является постоянной, она все время изменяется, то увеличиваясь, то уменьшаясь по ходу траектории. Выражаясь научным языком, наивысшая точка орбиты (максимальное удаление от Земли) называется апогеем, а наинизшая (минимальное удаление от Земли) точка – перигеем. Находятся они, соответственно в южном и северном полушариях Земли.

Согласно Второму Закону Кеплера планета (в нашем случае спутник), движущаяся в плоскости проходит (описывает) за равные промежутки времени равные площади. Из этого можно сделать вывод, что спутники движутся неравномерно. Чем ближе спутник к Земле (перигей), тем выше его линейная скорость, и чем дальше он от Земли (апогей), тем его скорость ниже. Это явление позволило ученым предположить, а потом и рассчитать различные спутниковые орбиты , оптимальные для конкретного целевого назначения.

Какие бывают орбиты

В зависимости от заданной начальной скорости, выведенный в космос спутник занимает определенную орбиту (или сначала одну, а потом другую). Свойства орбиты спутника позволяют оптимизировать приемо-передающее оборудование для оптимальной реализации поставленных задач. Различаются орбиты по наклонению, по величине большой полуоси (или высоте над поверхностью Земли) и по скорости обращения спутника вокруг Земли. Рассмотрим виды спутниковых орбит подробнее.

Орбиты с заданным наклонением

Эта классификация показывает, как орбиты различаются по углу наклонения. Чем больше угол наклонения орбиты, тем более заметен будет спутник в северных широтах. А чем спутник выше, тем шире становиться область видимости. Существуют экваториальные (орбита проходит вдоль экватора Земли), полярные (орбита проходит перпендикулярно экватору) и солнечно-синхронные орбиты. Последняя орбита чаще всего используется для размещения спутников, предназначенных для фото и видео съемки поверхности Земли.

Разновысотные орбиты (величина большой полуоси)

В зависимости от высоты орбиты, выведенный спутник, соответственно, называется низкоорбитальным или среднеорбитальным.

Низкоорбитальные спутники летают над поверхностью Земли на высоте от 160 километров до 2000 километров. Их наиболее распространенное название в научной литературе: LEO (от англ. Low Earth Orbit – малая земная орбита).

Используются такие низкоорбитальные спутники чаще всего для обеспечения персональной радиотелефонной связи. Объясняется это бесперебойностью контакта наземных терминалов с ретрансляторами спутников, а также мощностью приемо-передающего сигнала. Данный аспект, однако, был использован в сфере массовых телекоммуникаций сравнительно недавно. Так, в странах с развитой инфраструктурой, доля услуг, предоставляемых именно низкоорбитальными спутниками, составляет всего около 35%. Основную долю составляют спутники, летающие на геостационарной орбите.

Среднеорбитальными спутниками называют спутники, летающие над поверхностью Земли на высоте от 2000 километров до 35786 километров. Называются они, соответственно, MEO (от англ. "Medium Earth Orbit – средняя земная орбита).

Именно эти орбитальные высоты используются системами глобальной навигации (GPS, ГЛОНАСС).Это вполне справедливо, так как заданная высота среднеорбитальных спутников позволяет максимально точно обмениваться данными с приемниками (навигаторами).

Геостационарная орбита

Данная классификация показывает скорость обращения спутника вокруг Земли, находящегося на определенной орбите. Скорость обращения такого спутника составляет 23часа 56минут и 4,09секунды. Несложно понять, что этот показатель равен земным суткам. Следовательно, спутник на такой орбите как бы «висит» в небе на одном месте.

Геостационарная орбита располагается от поверхности Земли на расстоянии 35786 километров. Орбита проходит в экваториальной плоскости Земли. Её радиус равен 42164 километрам. Это приблизительно в 6 раз больше, чем радиус нашей планеты (составляет 6378 километров). Небесные координаты такого спутника на геостационарной орбите остаются постоянными. Это дает возможность использовать их для работы спутникового телевидения. Сигнал, приходящий от таких спутников, четкий и бесперебойный.

Сохранение постоянной точки позиционирования («зависание» на одном месте) не является абсолютным, так как на спутник постоянно оказывается влияние ближайшего естественного спутника Земли – Луны. Луна вызывает гравитационные возмущения на орбите спутника, притягивая его к себе. Корректировка позиции спутника проводится с помощью двигателей, которыми он оснащен.

«Пояс Кларка»

Впервые в истории рассчитал геостационарную орбиту английский инженер Артур Кларк. Случилось это в, уже далеком, 1945 году. Кларк предложил использовать эту орбиту для спутников связи. Эта идея, на удивление самого Кларка, была реализована, и очень скоро! Практически все глобальные системы коммуникации обязаны своим существованием именно этому человеку. Если смотреть в более широком смысле, то все люди, кто сегодня пользуется Интернетом, находятся в неоценимом долгу перед Артуром Кларком. В Англии и большинстве других стран, особенно европейских, геостационарную орбиту называют «Поясом Кларка».

Вывод спутников на орбиту

Процесс отправки спутника и его вывод на заданную высоту (орбиту) представляет собой совокупность научно-практических действий, основанных на четких математических и физических расчетах. Непосредственная доставка спутника осуществляется многоступенчатой ракетой, с использованием промежуточной орбиты.

Для чего это нужно

Рассмотрение таких сложных, но интересных тем, как орбитальные спутники, определение и классификация орбит и другие, совершенно логично вызывает ряд вопросов. Какая от этого польза? Для чего всё это нужно знать?

Как уже говорилось в начале статьи, с появлением орбитальных искусственных спутников Земли и освоением человеком околоземной орбиты, многое в жизни современного человечества изменилось. Например, значительно снизилась средняя стоимость международных телефонных разговоров. Появилась возможность использования ресурсов глобальной системы спутниковой навигации. Точный прогноз погоды, расчет климатических изменений в определенных регионах планеты, прогнозирование гео-климатических изменений в планетарном масштабе, обследование морского дна и залежей полезных ископаемых, доступ во всемирную сеть Интернет в любой точке планеты, изучение космоса, в конце концов, - всё это стало возможным благодаря орбитальным спутникам.

К сожалению, сегодня околоземная орбита перенасыщена различным «космическим мусором». Подсчитано, что более 1 100 летающих объектов диаметром более полуметра находятся в непосредственной близости от геостационарной орбиты Земли, на которой, как правило, размещается коммуникационное оборудование. Однако, всего лишь 300 из этих объектов - это действующие спутники. Среди опасных объектов, которые за ненадобностью бросили в космосе на разных высотах,- 32 давно выведенных из строя ядерных реактора. Все это говорит о неблагодарности отдельных «пользователей» орбиты к тем, кто когда-то подарил нам бесценные знания о Законах движения тел во вселенной.

Геостационарный искусственный спутник Земли представляет собой аппарат, которой двигается вокруг планеты в восточном направлении, по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли.

Если смотреть на такой спутник с Земли, то наблюдателю покажется, что он недвижется, а стоит на одном месте. Вахта его орбиты равна 36 000 километров от поверхности планеты. Именно с такой высоты видна почти половина поверхности Земли. Поэтому, расположив равномерно вдоль экваториальной орбиты на равном расстоянии (через 120°) три одинаковых спутника, можно обеспечить непрерывное наблюдение за поверхностью планеты в диапазоне широт, равном плюс-минус 70°, и глобальную круглосуточную радио- и телевизионную связь.

При использовании данных спутников в системе «Орбита» повышается качество вещания. В связи с тем, что орбита спутника строго согласована с периодом вращения Земли, такой аппарат получил название синхронного, а его орбита — стационарной.

Для того чтобы было бол ее ясным положение спутника на орбите, ниже дается описание процесса вывода его на геостационарную орбиту.

Для начала стоит отметить, что такой спутник лучше всего запускать с космодрома, который находится на экваторе, в восточном направлении. Это следует делать потому, что появляется возможность использовать начальную скорость, обусловленную вращением Земли. В случае, когда космодром расположен не на экваторе, приходится использовать довольно сложную двух- или трехимпульсную схему выведения.

В первую очередь спутник вместе с последней ступенью ракеты-носителя выводится на круговую промежуточную орбиту на высоте около 200 километров и оставляется на ней до возникновения благоприятного момента для последующего маневра. В первый раз двигательную установку включают для того, чтобы перевести спутник с орбиты ожидания на переходную, которая своим апогеем соприкасается со стационарной, а перигеем — с исходной орбитой. Причем включение двигателей аппарата должно совпасть со временем, когда спутник пересекает экватор. Продолжительность полета должна быть такой, за которую спутник выйдет в заданную точку стационарной орбиты. Как только аппарат достигнет апогея, опять включаются двигатели для поворота плоскости переходной орбиты и поднятия перигея до высоты стационарной орбиты. Затем двигатели выключаются, и спутник отделяется от ракеты-носителя.

Если космодром находится на пороге более 50°, то при выводе спутника на орбиту, кроме двух рассмотренных выше включений двигателей, должно выполняться еще одно. Как и в первом случае, спутник запускается на заданную орбиту, затем переводится на переходную, но при этом высота апогея должна быть значительно больший и превышать высоту стационарной орбиты. При достижении аппаратом апогея включаются двигатели, и спутник переводится на вторую переходную орбиту, которая расположена в плоскости экватора и касается своим перигеем стационарной орбиты. На второй переходной орбите, в перигее, в третий раз включаются двигатели. Это делается для того, чтобы уменьшить скорость спутника и стабилизировать его на этой орбите.

В декабре 1975 года был создан новый спутник связи — «Радуга», которому был присвоен международный регистрационный индекс «Стационар-1». Он используется для тех же целей, что и «Малния», но находится на стационарной орбите. А что собой представляет стационарная орбита? «Радуга» летает по круговой орбите в плоскости экватора на высоте 36 000 километров. Его угловая скорость точно такая же, как скорость вращения Земли. Получается, что он постоянно висит над одной и той же точкой планеты. Поскольку имеется такой высоко расположенный ретранслятор, можно сэкономить на постройке наземных радио- и телестанций, то есть оснащать их небольшими по размеру приемными антеннами.

В 1978 году появился «Стационар-2», а еще через год — спутник «Экран» (международный регистрационный индекс «Стационар-Т»). Данный спутник имел особую функцию: при его использовании облегчился прием передач Центрального телевидения на упрошенные наземные приемные установки.

Постоянное местонахождение спутника «Экран» — точка, соответствующая 99° восточной долготы, над Индийским океаном. Спутник обеспечивает ретрансляцию как черно-белых, так и цветных телевизионных программ на территорию площадью около 9 миллионов квадратных километров. Для приема сигналов с «Экрана» применяются наземные установки двух типов. При использовании установки первого типа ведется профессиональный прием программ с последующей подачей их на телецентры. Не, в свою очередь, передают сигнал непосредственно на телеприемники телезрителей, находящиеся в радиусе 10-20 километров. Приемные установки могут быть смонтированы как на городском, так и на сельском узле связи.

Наземная приемная установка второго типа предназначена для применения совместно с маломощными телевизионными ретрансляторами, обслуживающими телевизионные приемники, находящиеся в радиусе 3-5 километров, а также для непосредственного коллективного приема телепрограмм с подачей их в домовую распределительную сеть. Установки второго типа оснащены антеннами уменьшенного размера и более простым приемным оборудованием.

Спутниковой связью пользуются не только при приеме телевизионных передач или для обеспечения телефонного разговора с далеко находящимся абонентом, но и для передачи всевозможной служебной информации. Сейчас в напей стране действует около сотни наземных станций «Орбита», которые через спутники-ретрансляторы могут связать Саратов с Иркутском, Тбилиси с Якутском и т. д.

Имеется еще одна, но очень важная функция у искусственных спутников Земли. В воздухе, на море и на супе порой возникают аварийные ситуации, и люди нередко оказываются в сложной обстановке. Практически всегда при кораблекрушениях, авариях самолетов и прочих неприятностях требуется найти пострадавших и оказать им помощь. В настоящее время поиск и спасение терпящих бедствие судов и самолетов осуществляются при помощи спутников.

Тридцать первого марта 1978 года на орбиту был выведен искусственный спутник Земли типа «КЬамос-1000». Он предназначался для определения местонахождения судов транспортного и рыбопромыслового флотов. В 1982 году 30 июня был запушен «КЬсмос-1383». На нем была установлена аппаратура для определения координат морских и воздушных судов, терпящих бедствие. Через небольшой промежуток времени вывели на орбиту «КЬсмос-1447» и «КЬсмос-1574».

Принцип работы космической поисково-спасательной системы следующий. Пролетая на высоте 800-1000 километров, спутник принимает сигналы, поступающие от аварийных радиобуев с площади круга до 27 000 квадратных километров. Собрав информацию, спутник передает ее в наземные пункты. В этих пунктах информация перерабатывается, анализируется, вычисляются координаты аварийных радиобуев, и все данные передаются в ближайший к месту аварии поисково-спасательный центр. А остальное — дело техники, потому что спутник-спасатель определяет место нахождения радиобуя с точностью в 2-3 километра за 8-12 минут.

В течение нескольких лет с большим успехом работает внутригосударственная система спутниковой связи, называемая «Орбита». В настоящее время она является неотъемлемой частью Единой автоматизированной системы связи страны. Кроме этого, уже функционирует непосредственное телевизионное вешание (НТВ). Прием сигнала со спутника идет на индивидуальную антенну и передается на экран телевизора. Преимущества НТВ совершенно очевидны: происходит охват больших, чем раньше, территорий, передача телевизионного и радиосигнала в самые отдаленные уголки планеты. Причем данная система не нуждается при последующей ретрансляции телевизионных изображений в сложной наземной технике, то есть для прямого приема телепрограмм из космоса достаточно провести лишь небольшую модификацию телевизионных приемников.

Большинство космических полётов выполняется не по круговым, а по эллиптическим орбитам, высота которых меняется в зависимости от местоположения над Землёй. Высота так называемой «низкой опорной» орбиты, от которой «отталкивается» большинство космических кораблей, равна примерно 200 километрам над уровнем моря. Если быть точным, перигей такой орбиты равен 193 километрам, а апогей составляет 220 километров. Однако на опорной орбите имеется большое количество мусора, оставленного за полвека освоения космоса, поэтому современные космические корабли, включив свои двигатели, перебираются на более высокую орбиту. Так, например, Международная Космическая Станция (МКС ) в 2017 году вращалась на высоте порядка 417 километров , то есть в два раза выше опорной орбиты.

Высота орбиты большинства космиечских кораблей зависит от массы корабля, места его запуска и мощности его двигателей. У космонавтов она варьируется от 150 до 500 километров. Так, например, Юрий Гагарин летел на орбите с перигеем в 175 км и апогеем в 320 км. Второй советский космонавт Герман Титов летел на орбите с перигеем в 183 км и апогеем в 244 км. Американские «челноки» летали на орбитах высотой от 400 до 500 километров . Примерно такая же высота и у всех современных кораблей, доставляющих людей и грузы на МКС.

В отличие от пилотируемых космических кораблей, которым надо вернуть космонавтов на Землю, искусственные спутники летают на гораздо более высоких орбитах. Высота орбиты спутника, вращающегося на геостационарной орбите, может быть рассчитана, опираясь на данные о массе и диаметре Земли. В результате нехитрых физических расчетов можно выяснить, что высота геостационарной орбиты , то есть такой, при которой спутник «зависает» над одной точкой на поверхности земли, равна 35 786 километрам . Это очень большое удаление от Земли, поэтому время обмена сигналом с таким спутником может достигать 0,5 секунд, что делает его непригодным, например, для обслуживания онлайн-игр.

Сегодня 19 августа 2019 года. А вы знаете, какой сегодня праздник ?



Расскажите Какова высота орбиты полёта космонавтов и спутников друзьям в социальных сетях:

Точка стояния

,

где - масса спутника, - масса Земли в килограммах , - гравитационная постоянная , а - расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

,

где - центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы . Следовательно, геостационарная орбита определяется лишь высотой, при которых центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

,

где - угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае - сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

.

Сокращая , переводя влево, а вправо, получаем:

.

Можно записать это выражение иначе, заменив на - геоцентрическую гравитационную постоянную:

Угловая скорость вычисляется делением угла, пройденного за один оборот ( радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день , или 86 164 секунды). Получаем:

рад/с

Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

Можно сделать вычисления и иначе. Высота геостационарной орбиты - это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

Линейная скорость спутника, движущегося с угловой скоростью на расстоянии от центра вращения равна

Первая космическая скорость на расстоянии от объекта массой равна

Приравняв правые части уравнений друг другу, приходим к полученному ранее выражению радиуса ГСО:

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу,

то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырех точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува-гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях - как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток».

Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

Недостатки геостационарной орбиты

Задержка сигнала

Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля-спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Ping (ответ) составит полсекунды (точнее 0,48 с). С учетом задержки сигнала в аппаратуре ИСЗ и аппаратуре наземных служб общая задержка сигнала на маршруте «Земля → спутник → Земля» может достигать 2-4 секунд . Такая задержка делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх) .

Невидимость ГСО с высоких широт

Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях, спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу ), то невозможна связь и телетрансляция с использованием ГСО в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды . К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположеной на 75° ю.ш. французской станции Конкордия , с которой уже видно несколько американских геостационарных спутников .

Таблица наблюдаемого сектора геостационарной орбиты в зависимости от широты места
Все данные приведены в градусах и их долях.

Широта
местности
Видимый сектор орбиты
Теоретический
сектор
Реальный
(с уч. рельефа)
сектор
90 -- --
82 -- --
81 29,7 --
80 58,9 --
79 75,2 --
78 86,7 26,2
75 108,5 77
60 144,8 132,2
50 152,8 143,3
40 157,2 149,3
20 161,5 155,1
0 162,6 156,6

Из вышележащей таблицы видно например, что если на широте С.-Петербурга (~60°) видимый сектор орбиты (и соответственно кол-во принимаемых спутников) равен 84 % от максимально возможного (на экваторе), то на широте по-ва Таймыр (~75°) видимый сектор составляет 49 %, а на широте Шпицбергена и мыса Челюскина (~78°) лишь 16 % от наблюдаемого на экваторе. В этот сектор орбиты в районе Сибири попадает 1-2 спутника (не всегда необходимой страны).

Солнечная интерференция

Одним из самых неприятных недостатков геостационарной орбиты, является уменьшение и полное отсутствие сигнала в ситуации, когда солнце и спутник-передатчик находятся на одной линии с приёмной антенной (положение «солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут . В ясную погоду, сфокусированые светлым покрытием антенны солнечные лучи могут повредить (расплавить) приёмо-передающую аппаратуру спутниковой антенны .

См. также

  • Квази-геостационарная орбита

Примечания

  1. Noordung Hermann The Problem With Space Travel. - DIANE Publishing, 1995. - P. 72. - ISBN 978-0788118494
  2. Extra-Terrestrial Relays - Can Rocket Stations Give Worldwide Radio Coverage? (англ.) (pdf). Arthur C. Clark (October 1945). Архивировано
  3. Требование неподвижности спутников относительно Земли на своих орбитальных позициях на геостационарной орбите, а также большое количество спутников на этой орбите в разных её точках, приводят к интересному эффекту при наблюдении и фотографировании звёзд с помощью телескопа с использованием гидирования - удержания ориентации телескопа на заданной точке звёздного неба для компенсации суточного вращения Земли (задача, обратная геостационарной радиосвязи). Если наблюдать в такой телескоп звёздное небо вблизи небесного экватора , где проходит геостационарная орбита, то при определённых условиях можно видеть, как спутники друг за другом проходят на фоне неподвижных звёзд в пределах узкого коридора, как автомобили по оживлённой автотрассе. Особенно хорошо это заметно на фотографиях звёзд с длительными экспозициями, смотри, например: Babak A. Tafreshi. GeoStationary HighWay. (англ.) . The World At Night (TWAN). Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010. Источник: Бабак Тафреши (Ночной мир). Геостационарная магистраль. (рус.) . Астронет.ру. Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010.
  4. для орбит спутников, масса которых пренебрежимо мала по сравнению с массой притягивающего его астрономического объекта
  5. Орбиты искусственных спутников Земли. Вывод спутников на орбиту
  6. The Teledesic Network: Using Low-Earth-Orbit Satellites to Provide Broadband, Wireless, Real-Time Internet Access Worldwide
  7. Журнал «Вокруг Света».№ 9 Сентябрь 2009. Орбиты, которые мы выбираем
  8. Мозаика. Часть II
  9. взято превышение спутником горизонта в 3°
  10. Внимание! Настаёт период активной солнечной интерференции!
  11. Солнечная интерференция

Ссылки

Траектории движения искусственных космических аппаратов отличаются от орбит естественных небесных тел: дело в том, что в первом случае присутствуют так называемые «активные участки». Это те участки орбиты спутников , на которых они двигаются, включив реактивный двигатель. Таким образом, вычисление траектории движения космических аппаратов – сложная и ответственная задача, занимаются которой специалисты в области астродинамики .

Каждая спутниковая система обладает определенным статусом, зависящим от назначения спутника, его размещения, охвата обслуживаемой территории, принадлежности как самого космического аппарата, так и наземной станции, принимающей его сигналы. В зависимости от статуса, спутниковые системы бывают:

  • Международные (региональные или глобальные);
  • Национальные;
  • Ведомственные.

Кроме того, все орбиты подразделяются на геостационарные и негеостационарные (в свою очередь, делящиеся на LEO – низкоорбитальные, MEO – средневысотные и HEO – эллиптические). Рассмотрим эти классы подробнее.

Геостационарные спутниковые орбиты

Этот тип орбиты используется для размещения космических аппаратов чаще всего, ведь он обладает существенными преимуществами: возможна непрерывная круглосуточная связь, а сдвиг частоты практически отсутствует. Геостационарные спутники располагаются на высоте около 36000 км над поверхностью Земли и двигаются со скоростью ее вращения, как бы «зависая» над определенной точкой экватора, «подспутниковой точкой». Однако, на самом деле, положение такого спутника не неподвижно: он испытывает некоторый «дрейф» из-за ряда факторов, как следствие – орбита слегка смещается со временем.

Как уже отмечалось, геостационарный спутник практически не требует перерывов в работе, так как отсутствует взаимное перемещение космического аппарата и его наземной станции. Система, состоящая из трех спутников этого типа, способна обеспечить охват почти всей земной поверхности.

Вместе с тем, такие системы не лишены и определенных недостатков, главный из которых – некоторая задержка сигнала. Поэтому спутники на геостационарных орбитах применяются чаще всего для осуществления радио- и телевещания, в которых задержки в обоих направлениях 250 мс не сказываются на качестве сигнала. Существенно более ощутимыми оказываются задержки в системе радиотелефонной связи (с учетом обработки сигнала в наземных сетях, суммарное время уже примерно 600 мс). Кроме того, зона охвата подобных спутников не включает высокоширотные районы (свыше 76,50° с.ш . и ю.ш .), то есть действительно глобальный охват не гарантируется.

В связи с бурным развитием спутниковой связи, в последнее десятилетие на геостационарной орбите стало «тесно», а с размещением новых аппаратов возникают проблемы. Дело в том, что, в соответствии с международными нормами, на околоэкваториальной орбите можно разместить не более 360-ти спутников, иначе будут возникать взаимные помехи.

Средневысотные орбиты спутников

Спутниковые системы этого типа начали разрабатывать компании, занимающиеся изначально выпуском геостационарных космических аппаратов. Средневысотная орбита обеспечивает более качественные показатели связи для подвижных абонентов, так как каждый пользователь мобильной связью оказывается в поле достижения одновременно нескольких спутников; суммарная задержка – не более 130 мс.

Местоположение негеостационарного спутника ограничено так называемыми радиационными поясами Ван-Аллена, пространственными поясами заряженных частиц, которые были «захвачены» магнитным полем Земли. Первый из устойчивых поясов высокой радиации находится примерно на высоте 1500 км от поверхности планеты, его размах – несколько тысяч километров. Второй пояс – с такой же высокой интенсивностью (10 000 имп ./с), находится в пределах 13000–19000 км от Земли.

Своеобразная «трасса» для средневысотных спутников располагается между первым и вторым радиационными поясами, то есть на высоте 5000–15000 км. Эти аппараты слабее геостационарных, поэтому для полного покрытия поверхности Земли необходима орбитальная группа из 8-12 спутников (например, Spaceway NGSO, ICO, «Ростелесат »); каждый спутник находится в зоне радиовидимости наземной станции недолго, примерно 1,5-2 ч.

Низкие круговые орбиты спутников

Спутники на низких орбитах (700-1500 км) обладают некоторыми преимуществами перед другими космическими аппаратами по энергетическим характеристикам, однако, проигрывают в длительности сеансов связи, а также общем сроке службы. Период обращения спутника, в среднем, составляет 100 мин, при этом примерно 30% этого времени он пребывает на теневой стороне планеты. Аккумуляторные бортовые батареи способны испытать в год около 5000 циклов зарядки/разрядки, как результат – срок их работы не превышает 5-8 лет.

Выбор подобного диапазона высот для низкоорбитальных спутниковых систем неслучаен. На высоте менее 700 км относительно высокая плотность атмосферы, что вызывает «деградацию» орбиты – постепенное отклонение от курса, для его сохранения требуются повышенные затраты топлива. На высоте же 1500 км начинается первый пояс Ван-Аллена, в зоне радиации которого практически невозможна работа бортовой аппаратуры.

Однако в связи с низкой высотой орбиты, для охвата всей территории Земли требуется орбитальная группировка из не менее чем 48 космических аппаратов. Период вращения на этих орбитах – 90 мин-2 ч, при этом максимальное время пребывания спутника в зоне радиовидимости – всего 10-15 мин.

Эллиптические орбиты

Эллиптические орбиты спутников Земли являются синхронными, то есть, будучи выведенными на орбиту, они вращаются со скоростью планеты, а период обращения кратен суткам. В настоящее время используется несколько типов подобных орбит: Archi-medes , Borealis , «Тундра»,«Молния».

Скорость эллиптического спутника в апогее (при достижении вершины «эллипса») ниже, чем в перигее, поэтому в этот период аппарат может находиться в зоне радиовидимости определенного региона дольше, чем спутник с круговой орбитой. Сеансы связи, к примеру, у «Молнии» длятся 8-10 ч, а система из трех спутников способна поддерживать круглосуточную глобальную связь.